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PREFACE

This study was undertaken to examine, through the use of historical

data, the validity of breakpoint hypotheses as explanations of the out-

comes of land combat battles. The validity of breakpoint hypotheses is

of interest to the Air Force because such hypotheses are imbedded in

several models being employed to evaluate weapons systems in terms of

the effect of air-delivered munitions on the course of a land combat

engagement.

The work reported here is a part of two larger Rand studies, the

Forward Air Strike Evaluation (FAST-VAL) project and a broad study of

close air support. In both of these, it was desirable to have some

way of relating the outcome of a battle to the effects of personnel

casualties inflicted by air. This report presents one aspect of the

exploration of the range of validity of the general breakpoint hypoth-

esis. The scope of this report is limited to exploring a popular form

of assumption regarding the relationship of casualties to the decision

to terminate a battle--the assumption that a military force gives up

the battle when its personnel casualty fraction reaches a certain level,

which may be either a fixed quantity or one determined on a probabil-

istic basis. Assumptions of this type are commonly used to simplify the

problem of deciding when and how to terminate simulated battle engage-

ments in war games, field maneuvers, and computer simulations. The ob-

ject of the present investigation is to determine the extent to which

such a procedure is justified by confronting it with available data on

historical battle engagements.

This report will be of interest to persons concerned with war games

or similar efforts involving the relation of the outcome of a tactical

engagement to the personnel casualties incurred by the contending forces.
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SUMMARY

The purpose of this report is to address the validity of a break-

point-type hypothesis for determining the terminal status of a land

battle. The primary version of the breakpoint hypothesis used is a

moderate simplification of the ones frequently used to determine when

and how to terminate simulated combat for various types of combat mod-

els, such as those used in war games, computer simulations, and the

like. The basic breakpoint hypothesis used is as follows:

1. Each side selects independently a breakpoint from a distribu-

tion of such breakpoints and gives up the battle when its

casualty fraction reaches its breakpoint.

2. These breakpoint distribution curves are generally applicable.

3. The casualty fractions of the forces are deterministically and

monotonically related to each other.

Some of the major theoretical implications of this breakpoint hypothe-

sis are developed, and these are quantitatively compared against casualty-

fraction distribution data from various investigations of land combat.

Some alternative versions of the basic breakpoint hypothesis are out-

lined and tentatively discussed in terms of the same data, to see what

leads they may provide to a more satisfactory theory of the battle ter-

mination process.

The principal finding is that the breakpoint hypothesis yields the-

oretical implications that are at variance with the available battle

termination data in several essential respects. Some tentative observa-

tions and remarks are offered regarding possible directions for future

attempts to resolve the problem of decision in battle. However, the

task of devising a theory that satisfactorily accounts for the available

data is not within the scope of this report. Until a better theoretical

explanation of the battle termination procets becomes available, the

soundness of models of combat such as war games and computer simulations

that make essential use of breakpoint hypotheses is suspect.
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LIST OF SYMBOLS AND TECHNICAL TERMS

A - rate of defender force attrition per unit attacker troop

Cz = (T) - total casualties suffered by side z during the battle

(Cz = z0 - z)

C (t) - casualties sustained by side z as of time t into the battle;
z C z(t) - z 0 - z(t)

D - rate of attacker force attrition per unit defender troop

Dx(vIWY) - conditional distribution of Lx, given Wy
Dy(u!Wx) - conditional distribution of Ly, given Wx

F z(u) - break curve for side z, given the probability that the

side's breakpoint threshold, L , will not exceed u;

Pr{Lz < u)

fz f (T) - casualty fraction sustained by side z in the battle

f (t) - casualty fraction for side z as of time t into the battle;z

(f Z(t) - Cz(t)/zO)

Lz - preselected (breakpoint) casualty-fraction level which, if

met or exceeded, results in side z's losing the battle

T duration of the battle

W - the event that side z winsz
x - general symbol for the attacker

y - general symbol for the defender

z - general symbol denoting a value of either x or y, depending

on context

z z(T) - surviving troop strength of side z at the end of the battle

z - initial troop strength of side z at the start of the battle

z(t) - surviving troop strength of side z as of time t into the

battle

A (u) - P(f < u!W')

6(x, a) - Dirac 6-function of x with spike at a so that
x

a(x, a) 6 / (t, a) dt

a , x < a
a(x, a) - , x w a

i, > a
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S- a strictly increasing monotonic function relating fx(t)
to f y(t) via the formula f x(0 - q[fy (t)]

T(u) - Min [y(u), 1) - cp(u)a(l, qp(u)) + a(q,(u), 1)

dual - the result of applying the usual transposition to a for-

mula, expression, etc.
"usual trans-

position" - x -Y y, y ÷ x, ,i + •, 1 + '-i

t

.4

j.
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I. INTRODUCTION

Consider two opposing forces engaged in a land battle. As the en-

gagement continues, both sides will suffer casualties. Eventually, the

battle will end. At the termination uf the engagement, the situation

may be one of the following:

o One side has, for all practical purposes, been annihilated,

leaving its opponent in control. of the battlefield.

o One side surrenders and submits to the will of its opponent,

who tuereby acquires control of the battlefield.

o Neither side has surrendered or been annihilated, but one of

them has disengaged and either has withdrawn or is in the process of

withdrawing from the area, leaving its opponent rather clearly in con-

trol of the battlefield.

o Neither side has surrendered or been annihilated, but both sides

have disengaged their forces, and both sides either have withdrawn or

are in the process of witbdrawing their forces from the area. The

withdrawal is mutual, and it is impossible, or at any rate a very dif-

ficult and controversial matter, to assert that either side has practi-

cally exclusive control of the battlefield.

This list of possibilities excludes a situation that occasionally

occurs, in which both sides have disengaged their forces, but neither

side appears ready to leave the field. Sporadic skirmishes may be tak-

ing place along the line of demarcation. (Typically, this sort of situ-

t'ion occurs when a defensive force is reluctant to leave a strong

defensive position in the presence of a relatively stronger enemy who

considers that an immediate assault would not be worth the probable

losses.) These conditions evidently describe a kind of unstable stand-

off that will eventually resolve itself either into a renewal of the

engagement or intc one of the four kinds of termination described ear-

lier, so we will view the standoff case as a temporary pause or lull

in hostilities, rather than as a conclusion of the engagement.

Of the four terminal situations listed, the second and third,

where there is a fairly clear-cut victor, seem to be the most common.

Possession of the battlefield seems to be a generally accepted criterion
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of victory in the battle. There are cases in which the battle loser

has imposed a serious strategic cost on the tactical battlefield winner.

The "Pyrrhic" victory (Battle of Asculum, 279 B.C.) is a famous example

of a tactical victory obtained at a heavy strategic loss. Annihilation,

except in circumstances where retreat is impossible (as may occur, for

example, in sieges or in island campaigns), is quite rare. Even where

retreat is out of the question, a defender whose position is deteriorat-

ing will normally surrender rather than fight to the last man. Mutual

withdrawal, with its inconclusive outcome, although more frequent than

annihilation, is still a relatively rare occurrence. In general, a

weakening side will prefer to withdraw and abandon the field rathei

than surrender to its opponent, and (if withdrawal is not feasible)

will usually prefer to surrender at some casualty level short of 100

percent total annihilation.

A so-called "break curve" is a device sometimes used to model the

inclination of a weakening force to discontinue the engagement by ac-

knowledging defeat and either withdrawing (if it can) or surrendering.

It is a curve that purports to show the probability that a force will

discontinue the engagement as a function of the casualty fraction that

it has sustained. (Figure I shows a hypothetical break curve.) A break

curve is often used in combat models as follows. At or before the be-

ginning of a simulated engage-

ment, a sample casualty-fraction
1.00value for each side is drawn

E
from the distribution of such

c 0.75T
values defined by an appropriate

0) break curve. The values so se-
0.50 lected are called the "break-

06 points" for the two sides. Then,

0 S0.25 as the engagement progresses,

: both sides are considered to be
2 0 0 0 0 engaged in a contest for domi-0 0.25 0.50 0.75 1 O00

Caualty fraction nance until one of them accumu-

lates enough casualties to equal

Fig.l]-Hypothetical break curve or exceed its preselecled break-

point. At that point, tie side
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whose preselected breakpoint has been reached is said to "break," mean-

ing that it is presumed to discontinue or "break off" its attempts to

dominate the opposing side. Thus, the side that breaks is considered

by the rules of this particular model to lose the battle.

Break curves of the sort just described are presented in Ref. 1

(paragraph 15, Appendix IV). Reference 2 gives an example of their

application to a particular model. Frequently, application of the

break curves is simplified by assuming that breaks occur deterministi-

cally. The break-curve approach described above can be adjusted to

this case by taking the break curve to be a step function with a ver-

tical rise of unity at the deterministic breakpoint, as indicated in

Fig. 2. This special type of break curve will be called a determinis-

tic break curve. Perhaps the most common type of break curve proposed

is of the deterministic type. For example, deterministic break curves

have been used to determine the outcome of simulated battles in the

Rand FAST-VAL model,(3) have been used by the Research Analysis Corpo-

ration in a series of small-unit simulations, and were employed by

the Center for Naval Analyses to determine the subordinate unit out-

comes occurring in some large-scale simulations. Other examples could

be cited.

Objections to the validity of deterministic break curves as de-

scriptors of combat behavior have been voiced from time to time. For

example, according to Clark,(4) "The statement that a unit can be con-

sidered no longer combat effec-
1.0

tive when it has suffered a

9 specific casualty percentage

is a gross oversimplification

not supported by combat data."

.C 0.5 The collection of casualty data
C

included in Appendix F confirms
o this conclusion. Clark showed

a that a deterministic-type break

0, L 1. curve is not generally applicable
0 0.5 1.0

Casualty fraction to the observed behavior of com-

Fig.2-A deteministic break curve bat units but did not analyze the

Fig2 -deemnsi-ra uv
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validity of the more general type of break curve illustrated in Fig. 1.

At present, the validity of the more general type of break curve seems

to be a controversial matter. On one hand, some analysts have proposed

their use for war gaming, maneuver control, and similar purposes, as

noted earlier. Other analysts have designed simulations using the

simpler and more specialized deterministic break curves, despite Clark's

objections to their merit, and so by implication have embraced the basic

philosophy that unit behavior is representable by some type of break

curve.

On the other hand, some analysts have grave misgivings about the

validity of break curves--even while they may, on occasion, use them for

lack of anything better. Some of the objections raised against the use

of break curves are discussed below. Most of them can be characterized

as suggesting that some other factor or factors than simply the current

casualty level of a force influence the break behavior of the force.

Frequently these other factors are proposed as considerations supple-

mentary to, rather than as replacements for, the casualty-level crite-

ria. This suggests that the casualty level is often thought of as a

sort of "core" consideration that may be modified in particular situa-

tions by some of these additional considerations.

For example, it is sometimes suggested that the casualty rate, as

well as the casualty level, influences the behavior of a force. Other

considerations include the level of training and battle experience of

the troops, the influence of inclement weather or other unusual environ-

mental stress, the importance of the mission, troop morale, the quality

of leadership, the degree of knowledge and intelligence of the enemy's

situation and intentions, the perceived vigor of the enemy opposition,

the scale of friendly fire support and troop reinforcement, the logis-

tical supply situation, and the availability of good communications with

other friendly units. Many of the considerations that impinge on the

intuitive plausibility of the break-curve approach are carefully dis-

cussed in Ref. 4. We do not intend to pursue the extent to which the

break-curve model's "face validity" is affected by these plausibility

arguments, since we will confront our model with empirical data in order

to determine its validity.



However, there is one further objection that has been raised against

the break-curve approach that needs to be discussed in somewhat more de-

tail. This is the observation that each side in an actual battle surely

considers the progress of the battle and continually assesses its own

situation relative to that of its opponent, rather than being governed

solely by its own condition. In this view, each side conducts itself

according to the results of a dynamic decision process lasting through-

out the battle rather than preselecting a specific breakpoint, as is

done in the conventional application of break curves to war games, simu-

lations, and field maneuvers. That the objection is not always relevant

can be shown by the discussion in Appendix C, where it is shown how some

types of continuous decision process can be subsumed under the break-

curve paradigm without losing any generality. The key assumption in

such derivations is the supposition that each side, while it may decide

continually whether to continue the engagement or not, bases the deci-

sion solely on its own current casualty fraction. Similar derivations

of break curves from dynamic decision processes have been given in Refs.

5, 6, and 7. In none of these derivations is the possibility that one

side's breakpoint may depend on the casualty level of its foe explicitly

considered. Thus, it seems that in order for the objection raised ear-

lier (that break curves fail to reflect the dynamic decision processes

actually taking place in combat) to retain its validity it must also be

supposed as a minimum that one side's breakpoint distribution depends

on the other side's casualty level.

In addition to the conceptual issues discussed above, there are

several practical problems in assessing the validity of breakpoint as-

sumptions. These stem from the kind of empirical evidence that is more-

or-less readily available for comparisons with the model. First, the

recoverable data are essentially limited to estimates of the attacker

and defender initial troop strength, of the total losses on each side,

and (occasionally) of the temporal duration of the battle, together

Not necessarily only those inflicted prior to reaching a break-
point. In some cases, the historically reported casualties may have
occurred after the break. For example, routs sometimes degenerate into
massacres, and on occasion troops that have surrendered may have been
slain.
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with a narrative account of the action and an historical judgment either

awarding the victory to one side or the other or declaring the outcome

"indecisive." Second, the criteria for assessing casualties may vary

among battle descriptions from very broad to highly restrictive. Third,

there is often much scope for human error and/or capriciousness in se-

lecting the forces to be included in establishing troop strength or

casualties, as well as in arriving at an accurate inventory of these

quantities. These problems are noted and discussed a bit further in

Ref. 8, but no solution to them (short of a reexamination of the orig-

inal historical records) is in evidence. These problems make enlarging

the sample size a generally tedious, time-consuming, and often expen-

sive task. Such is the nature of the basic data at our disposal.

To the above difficulties yet another must be added--namely that

the attrition dynamics intervene between the break curve and the ob-

served battle outcome and force ratio. That is, after breakpoints are

established, parallel casualty assessments for each side must be made

in order to determine the final outcome and casualty fractions. Con-

sequently, it is clearly incorrect to establish a break curve by sim-

ply plotting the cumulative fraction of battles that terminated before

various casualty-fraction levels were sustained. A correct analysis

of the relation of observed casualty-fraction distributions and break

curves is given in the next section. Later sections present some em-

pirical battle data and discuss their relation to the model.

aL
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II. BREAKPOINT MODEL

The breakpoint model considered here is founded on the following

postulates. The ensuing development requires each of the assumptions

made, as well as some additional ones that will be introduced as we go

along.

BREAKPOINT HYPOTHESIS

Hypothesis A. Termination of a battle can be considered as gov-

erned by the following mechanism, or one that gives the same results:

Prior to the battle, each side independently and at random selects a

casualty-fraction value (breakpoint) from some distribution of casualty

fractions. When either side experiences a casualty fraction equal to

the preselected breakpoint, the battle terminates with a loss to the

side that "broke."

Hypothesis B. The breakpoint distributions (break curves) men-

tioned above are generally applicable. That is, they are the same for

all battles, irrespective of the size of forces involved or when, where,

by whom, or with what the battle was fought.

Hypotheses A and B are introduced because that is the way break

curves are used in many war games and combat simulations. Hypothesis B

can be tested by various groupings of empirical battle data, and also

In employing the casualty-fraction value as the key parameter
value, there is a tacit assumption that the battle is fought to its
conclusion with the forces on hand at the start, since this provides
a well-defined base for establishing the casualty fraction. If rein-
forcements occur during the battle, then it is necessary to have some
further rules about how to determine the casualty fraction. For ex-
ample, Clark( 4 ) computes distinct casualty-fraction values two ways:
(1) cumulative casualties from start of engagement per troop at the
start, and (2) cumulative casualties less cumulative replacements per
troop at the start. In other contexts, reinforcements are often mod-
eled in one of two extremes, i.e., either they are assumed to have a
negligible impact on the situation and ignored (perhaps with some ra-
tionalization to the effect that they arrived too late to affect the
outcome), or they are lumped with the initial forces and so are counted
as being fully effective throughout the battle. In this report, we
shall take the initial forces given in the references consulted as the
base for determining casualty fractions.
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makes explicit an assumption that is often overlooked. Hypothesis B

is, to a large extent, provisional, in that we may modify it if the em-

pirical data warrant it. It is certainly a rather strong and perhaps

controversial assumption, once it is clearly stated. However, it is

hoped that it may be testable, whereas the opposite tack of assuming

that every battle fought has its own special break curves which depend

on the unique circumstances surrounding the particular bazle is not

likely to lead to a theory that can be compared with such data as are

available.

While data from which accurate curves may be drawn are hard to

come by, there is no other reason for restricting the method to a single

break curve. In principle, the appropriate break curve could be made

to depend on any condition that could be known at the time the break

curve is sampled, such as whether the force is initially attacking or

defending, its state of training, experience, morale, physical weari-

ness, etc. We will not pursue this possibility here. The approach

adopted is in keeping with the spirit of Richardson's Principle to the

effect that "formulae are not to be complicated without evidence."

(See Ref. 9, p. xliv.)

Some notation needs to be introduced at this point (see also the

List of Symbols and Technical Terms). Let f x(t) and f y(t) be the frac-

tion of casualties for side x (attacker) and side y (defender) as of

time t after the start of the battle. Let Lx and L be the breakpointsx y
or casualty-fraction threshold values for the attacker (side x) and de-

fender (side y), respectively. Let f and f be the fraction of casu-x y

alties sustained by the attacker and the defender during the whole course

of the engagement.

By virtue of the breakpoint hypothesis, L and L are random vari-x y

ables with appropriate distributions. Either f or f is equal to itsx y

corresponding breakpoint, while the other is less. Thus, we have either
f < L and f - L (in which case the attacker wins) or f M L and

x x y y x x

f < L (in which case the defender wins). In either case, bothY Y
f x(t) < L and f (t) < L hold for all times t from onset of the battle

to its conclusion, i.e., for 0 g t ! T.

At this point, we introduce Hypothesis C.
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Hypothesis C. The losses, and hence equivalently the casualty

fractions, of the forces are deterministically and monotonically re-

lated to each other. That is, there is a monotonically increasing

function, ep(.), such that

fx(t) - Cs[fy (t)], 0 : t c T.

It would be of interest to consider the effect of assuming non-

deterministic and/or nonmonotonic relationships between the two casu-

alty fractions, although such an investigation is not within the scope

of this analysis. The assumption made here is a generalization of that

made by Weiss, who assumes that the casualty fractions are proportional

to each other (see Ref. 7, p. 776), i.e., that there is an "exchange

ratio," R, such that

f (t) - Rf (t).

This is equivalent (provided, of course, that R > 0) to the special

case of e(u) - Ru. At a later point in the argument, we will find it

useful to introduce particular forms of the function p. The real rea-

son for assuming rp to be strictly monotonic is to assure that it will
-I

have a uniquely definable inverse, rp , whose role is made clear by

ensuing developments.

DERIVATION OF FORMULAE FROM THE BREAKPOINT HYPOTHESIS

If the attacker is to win, then we must have

f X(t) < L x1 0 :c t :g T

The details of Weiss's subsequent development diverge from ours
in that he introduces a model of break behavior in terms of a continual,
but mutually independent evaluation of current status by each side. How-
ever, as was noted earlier, the approach presented here applies to this
case also, once the break curves for each side have been derived from
the dynamic model of each side's decision behavior (see Appendix C).

- .t,1l
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and

f - f (T) =L Ly y y

In particular, if the attacker wins, we must have

L x > f x - P(f y ) (Ly).

Conversely, if

q,(L y) < Lx)

then, since

f y(t) - L y 0 ! t : T,

it follows, by the monotonicity of rp, that

p(f y(t)) c rp(L y) < Lx, 0 : t To

and then using fx(t) CP(f y(t)),

f x(t) :! ep(L y) < Lx, 0 :! t :c T,

and the attacker wins. Thus, the attacker wins if, and only if,

rp(L y) < Lx.

Since we intend that battle outcomes be "almost always" well-

defined by our model, we could assign victory to the defender when

ep(L y) - L x, or we could see to it that this equality has zero probabil-

ity of occurrence. For some purposes, it may be convenient to adopt

the convention that the battle is a toss-up when rp(Ly) - Lx, and to

That is, except (possibly) for an event with zero probability of
occurrence.



award victory with equal probability to both sides. In any case, we

arrange things so that

P(w) = I - P(W y),

where P(W z) is the probability of a win for side z, z = x or y.

Let

F z(u) - P{Lz < u}

be the break curve for side z. Now, Fz(O) 0 0 would imply that there

is some positive probability that side z would break while its casualty

fraction was zero, which may physically be interpreted as a refusal to

engage in battle on the part of side z. Since we wish to consider only

cases where the battle has been joined, we take

F (0) - 0.z

Also, Fz(l) # 1 would imply that side z might not break even when its

casualty fraction was unity. This seems to be intuitively unreasonable,

and so we assume that

F z(1) - 1.

We now wish to express P(W ) in terms of the Fz 's. To do this we

begin by noting that the preceding discussion of the conditions under

which the defender wins yields the following relationship

P(W y) - P{Lx g (Ly ), 0 g Ly : 1),

Strictly speaking, since we adopt the convention that distribu-
tion functions are defined by their limits from the right, this should
read Fz(l + 0) - 1, and similarly the previous assumption is more ex-
actly expressed by Fz(O + 0) - 0. In some cases these technicalities
are important; in others, they are not.
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since Lx > p(L y) if, and

only if, the attacker wins.

To calculate P(W y), we con-
x sider the schematic diagram

shown as Fig. 3. The set

L (Lx ) of points (Ly, Lx) = (u, v)
for which the attacker wins

W W is marked by W , and simi-
larly for defender wins by

0 W . The Joint density of

Y (Ly, Lx) is, by Hypothesis

Fig.3-Relationship between L and L A, given bv
x y

dF (v) dF (u),

and so,

1 T (u)

P(W) = Jf f dF (v) dF (u)()

u-0 v=O

1

=f Fx(T(u)) dFy (u),

0

*
where we have truncated rp(u) by setting

'(u) - Min [rp(u), 11.

Similarly,

1 (v)
P(W) = f f dFx(v) dFy(u),

v-0 u-O

ep(u) is assumed to be monotonically increasing and defined for all
0 -C u :g 1 + 0.
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which becomes

1

P(W) -f Fy(T-l(v)) dFx(v). (2)

0

If c(1) < 1, as illustrated
in Fig. 4, then we define
ly-l1(v) - 1 for rp(I) :c v :ci

Wx This manner of defining the

S= ,(Ly 10inverse function preserves
,J X the correctness of the for-

mulae just given.
wY By integrating in the

0_ _ __ reverse order with respect
0 I to the variables u and v, we

u, L obtain formulae equivalent

to those that would result
Fig.4-Another possible relation from an integration by parts,

between L and L
x y thus,

1 1

P(W ) f f dJ y (u) dFX(v) f[I - Fy 4-l(v))] dFx(v) (3)

v=0 T-1 (v) 0

and

1 11

P(W) dF (u) dF (v) 1f~ - F (TI(u)) dF (u). (4)

u-0 'V(u) 0

From Figs. 3 and 4, we see that the conditional joint density of (Ly, L ),
y x
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given W , is

dF (u) dF (v)

P(Wx) , for (u, v) E Wx.

So the conditional density of L , given Wx, is

1
dD (ujW X f dF (u) dF x(v)

dDy(W) p(Wx )
v-'Y(u)x

[I - F ('(u))] dF (u)
x ( y) (5)

P (Wx)

Integration of this expression with respect to u from u - 0 to u - 1

and comparing the result with Eq. (4) shows that it represents a proper

probability density.

We now find the conditional distributions of casualty fractions

on each side when the attacker wins. We begin by recalling that when

x wins, Ly - f . But we have just found the density of L when x wins.y y y
Hence,

q

P(fy < qIWx) f d Dy(uIWx)

0

- D (qjW ). (6)
y x

Since fx - '(f y), the conditional distribution of the attacker's casu-

alty fraction when the attacker wins is

P(fx < sIW) X Pe(Y(fy) < SaWx)

- D (y- (sWIW 1. (7)
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In similar fashion we find the conditional density of L given W asx y

d DI dFy (u) dFx(v)

x y(Vy- f P(Wy
u=-1 (v)

[1 - Fy(T- (vr))] dFx(v)

P (W) (8)
Y

Since L - f whenever y wins, the zonditional distribution of the at-x X

tacker's casualty fraction when the defender wins is just

P(fx < SW y) = Dx(S1Wy). (9)

Since fx = T(fy ), the conditional distribution of the defender's casu-

alty fraction when he wins is

P(fy < qjWy) = P(f x < Y(q)JW V)

D x(Y(q)IWy). (y0)

These are the basic relations with which we shall work throughout

the rest of the report. A collection of formulae for convenient ref-

erence is given in Appendix D, and some particular cases are worked

out in Appendix E. It may be helpful to point out a "duality" property

possessed by these relations. For example, Eq. (10) can be obtained

from Eq. (7) by substituting x for y and y for x throughout, and sub-

stituting T for T This series of substitutions (x ) y, y - x, T -+ Y1

T-I 1 iY) will be called the "usual transposition." Formulae obtainable

from each other by invoking the usual transposition will be called duals

of each other. Thus, we have just shown that Eq. (10) is dual to Eq. (7),

and vice versa. Equations (1) and (3) are duals; Eqs. (2) and (4) are

duals; and Eqs. (5), (6), and (7) are dual to Eqs. (8), (9), and (10),

respectively. Clearly, any relation correctly derived from these equations
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has a dual relation obtainable from it by the usual transposition. The

derivation of this dual relation is obtainable by performing the usual

transposition on each step of the original dezivation. This property

of duality will be exploited in the following material to reduce the

amount of algebraic manipulation required. The usual transposition

can be applied to diagrams, expressions, etc., as well as to equations;

we will make use of duality in such cases as well.

THE USE OF OBSERVED CASUALTY-FRACTION DISTRIBUTIONS TO TEST THE
BREAKPOINT HYPOTHESIS

In the preceding paragraphs we have set down in explicit termrs

the breakpoint hypothesis (Hypotheses A, B, and C) and have shown how

to derive from these hypotheses formulae that purport to describe em-

pirical casualty-fraction distributions. In carrying out this deriva-

tion, we have been careful to maintain the essential distinction between

a break curve (which is a distribution of Lz breakpoint values) an-I a

casualty-fraction distribution (which is a distribut'on of fz values).

In this paragraph we show how observed casualty-fraction distributions

can be used to test the breakpoint hypothesis.

We begin by recalling relations (6) and (7), which are

P(f y < qjW) X D y(qjWx) A Ayx(q) (6)

and

P(fx < S;W) Dy (-- 1 (s)IW x -xx(s), (7)

where the A and A notation is introduced as an abbreviation. Com--
yx xx

bining relations (6) and (7) yields

Axx(a) - P(fx < sjW) P(fy < -1l(s)IW ) AVx (T- 1 (s)), (1)

with a dual result obtainable by the usual transposition x -+ y, y -Ox,

-I , T -I1

Now suppose that v had a graphical plot of the observed casualty
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fractions for a collection
P(f qlWx):x(q) of battles that were won by

the attacker. A hypothetical
C

P (<qWx) =yx(q) plot is shown in Fig. 5--
-- and there will be dual plot

= N YX whose labels are obtainable

from Fig. 5 by the usual

transposition, although the

0-- curves may, of course, be
q, -(q,) differently shaped on the

dual. We have indicated by
Fig.5- Hypothetical casualty-fraction the dashed lines how, using

distribution in battles won -1
by the attacker Eq. (11), the value of '-l(ql)

can be graphically read off

this plot. An exactly analogous procedure applied to the dual plot will

yield the value of T(ql). By repeating the process for several values

of q, and interpolating, it is thus possible to determine suitable ap-

proximations to the functions Y and T-1 .

Now, T is the functional relation between fx and fy , since fromx
the definition of T, we may write without loss of generality

fx(t) - '[fy (t)].

Having determined ' and '-1 by the graphical procedure just described,

we may plot these functions on a graph and see whether or not they obey

the necessary mathematical relationship between inverse functions, that

is, whether or not T is a reflection of T-I in the 45-deg line through

the origin, as illustrated in Fig. 6. If T and '-i obey the inverse

functional relationship, then this would tend to support the breakpoint

hypothesic If T and T_-I do not obey the necessary mathematical re-

lationship between inverse functions, then the breakpoint hypothesis

would be definitely disproven. We shall carry out just such a test in

a subsequent section.
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IMPORTANT LEMMAS

At this point we pause to

-/ present two lemmas that will

S."-~ 
1 (u) play a prominent role in the

* sequel.

.0e Lemma 1: If

- *(u)// 
x (u) = (u)

/

/ and

U

Fig.6--nverse functional relationship A yx(u) xy(u),

then T - T - I, where I is the identity function.

Proof. If A yx(u) Axy (u), then by Eq. (11) and its dual we have

axx(,(u)) Ayx (u) A xy(u) u Ayy)(-l(u)),

which may be written as

Ax (a) A yy (T-2 (8)).
xx yy

But since by assumption A (a) - A (s), this last impliesxx yy

A y (-2()) - A (s).

By dualizing the above argument, we may also conclude that

A x(T 2 (a)) - AX (s).
•xx( () xx(.

Since the A's are cumulative probability distribution functions, they

have definable inverses. As long as s does not lie within an interval
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of constancy for both A and A , we conclude thatxx y

2 -2

But then we must have

-l

If s does lie within an interval, of constancy for both A and A .xx y

we may define Y to be I within that interval without affecting the A

functions, and we shall adopt this convention to dispose of the ambi-

guity for such a case. This completes the demonstration.

Lemma 2: If Y(s) i s for some s, then

A yy(S) A xy(s),

and

Axx(S) Ayx(a)

Conversely, if Y(s) g s for some s, then

A yy(s) : Axy(s),

and

A xx(S) k Ayx(s).

Proof: Recall that the A's are distribution functions so that

v k u implies

6 zz'(v) I. Azz'(u).
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Then if T(s) • s,

A yy(S) A xy(T(s)) t A xy(s),

where the equality follows from the dual of Eq. (11). When the usual

transposition is applied, the inequality must, of course, be reversed,

since T(s) t s implies that Y-1 (s) ! s. This completes the first part

of the lemma. The second part is demonstrated by a similar procedure.



-21-

II, COMPARISON OF MODEL WITH DATA

PRELIMINARY COMPARISON

We first turn our attention to some of the available casualty-

fraction distribution data. Later we shall use some of these data to

obtain a test of the breakpoint hypothesis.

Some empirical data on casualty-fraction distributions are given

in Table 1 and graphically displayed in Fig. 7. The values for Y(q)

and T- (q) read graphically from these figures are listed in Table 2

and plotted in Fig. 8. There is clearly a practical equality of the

estimated T and T-I functions for 0 r q : 0.18, but a divergence for

higher values of q. Part of this divergence may be due to the pres-

ence of 13 battles with unusually high defender casualty fractions.

These battles are individually identified below:

Defender

Casualty
Fraction

(percent)

Alamo .............. 97
Attu ... ... ......... 100

Blenheim ........... 67
Bronkhurst-Spruit .. 60
Eniwetok ........... 100

Indus .............. 63
Iwo Jima ........... 100
Kwajalein North .... 98
Kwajalein South .... 86
Lesno .............. 67

Monongahela ........ 63

Ravenna ............ 75
Saipan ............. 92

Part of the divergence is also due simply to the difficulty of

accurately determining the abscissa value corresponding to a given

ordinate value when the slope of the curve is small, as occurs at

higher values of q.

* Some of the points with high casualty-fraction values plotted in
Fig. 7 are not listed in detail in Table 1, but were ,tained from
Refs. 8 and 10. The detailed values on which the points referred to
are based are given in the battle listing above.
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According to the theory developed up to this point, T and T-I were

supposed to be inverse functions. This is obviously not the case de-

picted in Fig. 8. Rather than being inverse functions,''they are nearly

eowal over a significant range of argument. Even when they diverge,

they most certainly do not exhibit any inverse funct16hal relation. Ac-

cordingly, there is a serious defect in the theory so-far developed.

SOME ADDITIONAL DATA AND FURTHER TESTS

The material of the preceding discussion is very damaging to the

breakpoint hypothesis. In the following, we confirm and extend the

results of that discussion by a second and much larger sample of data.

For this purpose, it was possible to use a large sample of data ex-

tracted from Bodart's Kriegs-Lexicon(11) by Willard,(12) as modified

by Schmieman. (13) This sample of battle data (which we shall call the

Bodart data) contains 1080 battles, with casualty-fraction data for

both sides in the battle, and can be used to generate casualty-fraction
*

distributions useful for testing the breakpoint hypothesis.

We shall actually make three distinct tests with these data, by

successively selecting three distinguishable groupings of the Bodart

data. The first such grouping will be the entire set of 1080 battles

and so will be the same as the Bodart data sample itself. The second

such grouping will be the subset of the Bodart data consisting of what

Willard( 1 2 ) calls the Category I battles, and includes battles described

in the Kriegs-Lexicon as treffen, gefecht, or schlact. These denote
"open" battles in the sense that both sides could, with about equal

facility, disengage and conduct an orderly withdrawal. The third group-

ing consists of what Willard calls the Category II battles, and includes

battles described in the Kriegs-Lexicon as belZagerung, einnahme, ersturmungu

kapitulation, and uberfall. These mainly denote "closed" battles in the

*

Data from Bodart's Kriegs-Lexicon were also used by Smith and
Donovan(1 4 ) to find the casualty-fraction distributions for the winner
and loser curves shown in 8-W and 8-L in Fig. F-1 in Appendix F of this
report.

4
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sense that one of the parties in the battle is encircled or otherwise

in a position from which an orderly withdrawal cannot readily be made,

and whose options for maneuver are correspondingly markedly more re-

stricted than those of his opponent. The Category I and Category II

battles are nonoverlapping exhaustive subsets of the Bodart data sample

and thus form a partition of it.

Casualty-fraction distributions for the entire set of Bodart data

are shown in Fig. 9. Inspection of parts (a) and (b) of Fig. 9 suggests

that the distribution of attacker's casualties when the attacker wins

is about equal to the distribution of defender's casualties when the

defender wins; and that the distribution of defender's casualties when

the attacker wins is about equal to the distribution of attacker's ca-

sualties when the defender wins. These two observations may be expressed

in symbols more concisely as

(xx(u) Ayy (u) (12)

Ayx (u) - Ay(U). (13)

Temporarily accepting the validity of these relations, we conclude from

Lemna 1 developed earlier that

T M -i . I.

But this conclusion is contradicted by the evidence. This may easily

be seen by checking a few points on the Y and T-1 curves based on the

distributions of Fig. 9, which show that '(u) - T- (u) - 2u, approxi-

mately. Thus, we can show the breakpoint hypothesis to be untenable

by validating relations (12) and (13) for the Bodart data. To do this,

we employ the Kolmogorov-Smirnov test for the equality of two distribu-

tion functions as described in Ref. 15.

The procedure for applying the Kolmogorov-Smirnov test is to find

the maximum absolute difference D between the empirical distribution

functions, and to multiply this by the factor 7mni(m J n), where m and
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n are the sample sizes for the two empirical distributions. If we set

w D mn/(m + n),

then

1 - K(w) = 1 - • (-l)ie-2j2w2

is the probability, under appropriate asymptotic conditions, that the

deviation between two empirical distribution functions will be more

than w, given that the empirical distribution functions actually are

obtained from independent random samples from a common continuous dis-

tribution function.

Applying this procedure to the data represented in Fig. 9 yields

a w of about 1.22 and, referring to a table of K(w) values given in

Ref. 15, we find that a deviation greater than 1.22 would occur by

chance about 10 percent of the time, given that the empirical distribu-

tions corresponding to A xy(u) and A yx(u) are actually from a common

distribution. Comparable results are obtained for the empirical distri-

butions corresponding to A xx(u) and A yyU). These results are taken to

indicate that we may reasonably proceed on the assumption that Eqs. (12)

and (13) hold for the Bodart data. Even if a strict equality does not

hold between the distribution functions involved in Eqs. (12) and (13),

a comparison of (a) and (b) of Fig. 9 shows that it would be unreason-

able to believe that the difference could be very great.

Next, we proceed to analyze the Category I (open) battles, as a

group separate from the Category II (closed) battles. Figure 10 gives

the empirical distribution of casualty fractions for these battles.

Applying the Kolmogorov-Smirnov test to the empirical distributions

corresponding to A and A yields a w of about 1.35. A larger de-xx yy

viation than this would occur by chance about 5 percent of the time

if the two empirical distributions were actually from a common distribu-

tion. For the empirical distributions corresponding to Axy and Ayx a
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1.0 value of w - 1.44 is obtained.
A larger value than this would

0.8 • occur by chance about 3 percent

of the time if the two empirical
-- 0.6

0. •,distributions were actually from

o, a common distribution. We doS0.4
0. not consider these probabilities

0.2 so small as to cause us to dis-

card Eqs. (12) and (13) for the
0 I I I

0.2 0.4 0.6 0.8 1.0 Category I battle data in the

present context. Independently

Fig.11---fand 'Ifunctions for of this opinion, the T and T-I

Category I battle data functions for the Category I

data are certainly not much dif-

ferent, as is evidenced by the curves of Fig. 11, and the breakpoint

hypothesis would come to grief in any case.

The empirical distribution curves for the Category II data are

shown in Fig. 12. For the empirical distributions corresponding to

A and A , w is about 0.38 and would be exceeded by chance about
xx yy

99.9 percent of the time. For the empirical distributions correspond-

ing to A and Ayx, w is about 0.47 and would be exceeded by chance

about 98 percent of the time. Clearly there is no reason in these re-

sults for rejecting Eqs. (12) and (13). Consequently, the breakpoint

hypothesis does not hold for the Category II data set either.

Although we shall not present the details, an application of the

Kolmogorov-Smirnov test to the empirical casualty-fraction distribu-

tions of Fig. 7 shows that their deviation from Eqs. (12) and (13) is

acceptable (a larger deviation would occur by chance abcut 30 percent

of the time). Thus, while Eqs. (12) and (13) hold to a reasonable

degree of approximation for all of the data analyzed, nevertheless

'=V-IV#1,

and this is in direct contradiction to Lemma 1. As a result, the break-

point hypothesis is untenable. The same conclusion (that the breakpoint
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1.0 "- hypothesis is untenable) can, of

0.8 course, be demonstrated without
0.8 4the use of Lemma 1 and without

0.6 - using Eqs. (12) and (13). The

' / procedure is simply to construct

S0.4 - Figs. 11 and 13 by the graphical

procedure explained earlier, and
0.2 to observe that the resulting Y

and Y-i functions clearly are

0 0.2 0.4 0.6 0.8 1.0 not mathematically inverse func-
u tions. However, the method used

Fig.13.---and q']functions for above, which invokes Eqs. (12)
Category 11 battle data and (13) may shed light on the

manner in which the breakpoint

hypothesis fails.

We may sum up the results of this section by saying that for all

of the data sets analyzed, Y and Y- are evidently not mutually in-

verse mathematical functions as is required by the breakpoint hypothesis.

Consequently, the breakpoint hypothesis is untenable. In fact, rather

than being inverse functions, it appears that

In addition, Eqs. (12) and (13) hold, at least approximately, for the

data analyzed. This suggests that the reason why T and T fail to

obey the inverse functional relationship may be a consequence of the

equality of the distribution functions expressed in Eqs. (12) and (13).
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IV. SOME SPECULATIONS AND SUGGESTED APPROACHES

We have shown In the foregoing that the breakpoint hypothesis in

the form given earlier predicts that a certain pair of functions are

mathematical inverses of each other, but that the empirical determina-

tions of these functions plainly do not exhibit any inverse functional

relationship. Consequently, the breakpoint hypothesis fails. We now

offer some speculations and tentative suggestions for future work on

the causes of this observed contradiction between theory and fact. It

will be helpful to review the statement of the breakpoint hypothesis

in its original form before proceeding. It states that

1. Each side selects independently a breakpoint from a distribu-

tion of such breakpoints and gives up the battle when its ca-

sualty fraction reaches its breakpoint (Hypothesis A).

2. These breakpoint distribution curves are generally applicable

(Hypothesis B).

3. The casualty fractions of the forces are deterministically

and monotonically related to each other via the T function

(Hypothesis C); i.e.,

fx (t) - T[fy (t)], 0 ! t ! T.

In the following sections we shall consider some tentative modifi-

cations of this breakpoint hypothesis and discuss them in terms of the

light they shed on the prospects for developing a theory that will sat-

isfactorily explain the extant data. Since devising a theory that would

account for most of the more important facts regarding the battle ter-

mination process is beyond the scope of the present study, the observa-

tions and speculations put forward are incomplete. They are offered in

the hope that subsequent investigations of battle termination phenomena

may find some of these suggestions helpful.

FIRST MODIFICATION OF THE BREAKPOINT HYPOTHESIS

Lemma 2 shows that under the hypotheses set forth above there

are only three possible relations between the casualty-fraction



-34-

distributions. If T(s) > s for all s, then

A yy() A xy(s),

and

Axx(S) g Ayx(S),

for all s. If T(s) c s for all s, then

yy (S) XA (s),

and

xx(S) yx

for all s. If T(s) is alternately larger and smaller than s, then the

theoretical casualty-fraction distributions alternately loop above and

below each other. It is plain that the empirical casualty-fraction

distributions do not exhibit either of these three behaviors, and this

constitutes yet another conflict of the breakpoint hypothesis and avail-

able data. However, it also suggests a way to evade the difficulty.

It involves using one T function when the attacker wins, and a differ-

ent T function when the defender wins. Thus, Hypothesis C is modified

to the extent of allowing the Y function to depend on the particular

battle in a conceptually simple way. Based on the empirical findings

expressed in Figs. 8, 11, and 13, it appears that we should consider

Hypothesis D.

Hypothesis D. There is a monotone nondecreasing function T such

that

fX Y i(f )fx "(y)

when the defender wins, while

fX -i (fy
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when the attacker wins; moreover, T(s) : s for all s. The T function

referred to in Hypothesis D should not be confused with the T function

of Hypothesis C. While they may be numerically similar, they are con-

ceptually quite distinct.

Now, when we retrace the proof of Lemma 2, making appropriate

changes to reflect Hypothesis D instead of Hypothesis C, we find that

the conclusions change to read as follows:

When the defender wins,

A yy(S) Axy(S) (14)

for all s. When the attacker wins,

Axx (S) k yx) (15)

for all s. These relations are certainly encouraging, since they are

qualitatively consistent with the data of Figs. 7, 9, 10, and 12. If

we interpret the results of the Kolmogorov-Smirnov tests made earlier

for the deviation between empirical casualty distributions to mean that

Eqs. (12) and (13) hold, it is statistically proper to increase our

sample size by merging the data for empirical distribution curves Ayy
and A xx, and also for empirical distribution curves Axy and A yx. When
we do that, it is convenient to let k stand for "loser" and w stand

for "winner" and to write the relations (14) and (15) in the single form

A ww(S) A w(S) (16)

for all s; and Hypothesis D under the same conditions can be rewritten

as

ft M I(f w),

with T(s) k s for all s.

A little thought shows that we may apply the graphical procedure

depicted in Fig. 5 to the empirical distribution fucntions Aww and
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Azw to obtain estimates of the Y function. To see how well this works

out, we first plot the loser's and the winner's casualty-fraction dis-

tributions for Category I and Category II battles as in Fig. 14. The

values obtained for the function T as determined from the distributions

of loser's and winner's casualty fractions are shown in Fig. 15.

As can be seen from Fig. 15, the empirically determined T functions

for the Category I and the Category II data are about equal, and both

are roughly linear up to argument values of approximately 0.5. In fact,

we have roughly that

2u for 0u:! u 0.5

S-

I for 0.5 : u g 1

Suppose we ask what break curves, when taken with this value of ',

would reproduce the observed winner's and loser's casualty fractions

shown in Fig. 14. Because of the quasi-exponential shape of the

observed casualty-fraction distribution curves, suppose we limit our-

selves to exponential break curves, as discussed in Example 3 of Ap-

pendix E. After some trial-and-error experimentation, we found that

the break curves shown in Fig. 16 would produce the tentative theo-

retical fits shown in Fig. 17. The qualitative agreement between

the theoretical and observed casualty distribution curves is very en-

couraging. However, the quantitative agreement, particularly for

the Category I battles in the range of casualty-fraction values be-

tween 0 and 0.1 or 0.2, is not very good. Application of the Kolmogorov-

Smirnov test procedure indicates that a worse agreement due to chance

alone could be expected for the Category II data about 10 percent of

the time for the loser's casualty fraction, and about 30 percent of the

time for the winner's casualty fraction. For the Category I data, a

poorer agreement due to chance alone would be expected only about 2 per-

cent of the time for the winner's casualty fraction and hardly ever for

the loser's casualty fraction. Under these circumstances, it is reason-

able to take the position that a Y(u) - 2u function and exponential

break curves may not provide a satisfactory explanation of the observed

data. Presumably the trial-and-error fitting process could be improved
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somewhat by more formal methods for fitting theoretical to empirical

curves. The fit might also be improved by rescaling the exponential

break curves as described in Example 3 of Appendix E (see footnote,

p. 79). To get a curve with the same general behavior as that of the

loser's break curve in part (a) of Fig. 16, it would be permissible to

take X£ negative, since the rescaling procedure will ensure that the

resulting function is a proper cumulative probability distribution.

These very interesting possibilities could not be pursued in adequate

depth within the scope of this investigation. Whether the fit would be

improved to a satisfactory level is impossible to say with complete

assurance without actually trying it. It may also be possible to fit

the observed data by permitting the break curves to deviate from strict

exponentiality, especially for the lower casualty-fraction values.

However, the number of free parameters then available for fitting the

data may be excessive, reducing the degrees of freedom and interfering

with the power of the statistical procedures to detect genuine depar-

tures from the null hypothesis.

Even if a good fit to the data can be obtained by assuming that Y

has the form

2u, 0O!Cu ½

l (u) -
1, :C u 1g

and carefully adjusting the break curves, it would still make sense to

determine whether or not the casualty-fraction data satisfy the rela-

tion

f -= (fw

If they do not satisfy this relation, then the situation may be much

more complicated than the apparent good fit to the loser's and winner's

casualty-fraction distribution might indicate. In order to determine

whether or not there is an approximately linear relationship between the

loser's and the winner's casualty fractions as implied by Hypothesis D
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and Fig. 15, we first consider some data on casualty fractions for var-

ious battles from Ref. 8. These data are plotted in Fig. 18. The

statistics for a linear regression of Inf on lnf were computed usingw

these data. They lead to an estimated regression line given by

Inf£ - -0.342 + 0.708 lnf
w

A more complete list of statistics for this regression computation is

included in Table 3.

It is evident from Fig. 18 that the functional relationship sup--

posed by Hypothesis D cannot be true--or, more precisely stated, the

implied assumption that we have made in the way we have used the Y func-

tion (namely, that it is the same for all battles) is not valid. Of

course, our use of Hypothesis C also made essential use of the tacit

assumption that the function Y as defined in that hypothesis was the

same for all battles. Indeed, in changing from Hypothesis C to Hypothe-

sis D, one of the motivations was to permit the Y function to vary de-

pending on whether the attacker or the defender won the battle, and

thus to allow at least that degree of variation in the Y function from

one battle to another. However, it is clear from Fig. 18 that there

is more than just that amount of interbattle variability. When the

linear-regression computations are performed for the Category I and

Category II data, and for log-transformed casualty fractions or untrans-

formed casualty fractions, the results are as given in Tables 4 and 5.

The significant observation is that in none of these cases does the

regression curve approximate very closely the expected Y(u) - 2u func-

tion, except possibly for small values of the casualty fraction. Thus,

it appears that not only do the casualty fractions vary more widely

from battle to battle than envisioned in Hypothesis D, but they do not

even on the average follow the relation anticipated on the basis of

the empirical determination of the T function presented in Fig. 15.

Consequently, the validity of Hypothesis D is uncertain. One

other approach might be tried here--that is, to assume the T function

to be actually as indicated in the results of the regressions of f

on f (or of the corresponding log-transformed quantities), and then
w
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Table 3

STATISTICS FOR REGRESSION OF lnf ON lnf a

Item Value
Regreesion-line intercept, a -0.34217
Regreseion-line slope, b 0.70753
Standard deviation of slope, a sub b 0.0805
Correlation coefficient, r 0.6796
Standard deviation of estimate, ayjx 0.6364
Variation of estimate, ey x** 2  

0.4050
Mean of X-values, m(X) -2.4425
Standard deviation of X-values, S.D.(X) 0.8286
Mean of Y-values, m(Y) -2.0562
Standard deviation of Y-valuee, S.D.(Y) 0.8627

alesrenaion model: ln(ft) a a + b 1n(fd). Num-
ber of data points - 92.

Table 4

RESULTS OF COMPUTATION FOR LINEAR REGRESSION OF lnf ON lnf a
£w

Battle Catesory
Item I (open) II (closed)

Simple alse 933 147
Intercept, a -1.1480 -0.5690
Slope, b 0.3464 0.4077
Standard deviation of elope, ab 0.0271 0.0650
Correlation coefficient, r 0.3883 0.4621
Standard deviation of estimate, aylx 0.7751 0.7762
Mean of x - lnfv -2.9358 -2.4076
Standard deviatioa of z 0.9370 0.9885
Mean of y - lnft -2.1708 -1.5506
Standard deviation of y 0.8407 0.8723
Var x 0.8779 0.9771
Var y 0.7068 0.7608
r

2  
0.1508 0.2135

1 - r
2  

0.8492 0.7865

aleareesion model: loft - a + b luf

Table 5

RESULTS OF COMPUTATION FOR LINEAR REGRESSION OF f ON f a

Battle Cateaory
Item I (open) 11 (closed)

Semple ealse 933 147
Intercept. a 0.1163 0.1904
Slopa, b 0.5358 0.6851
Standard deviation of elope. ob 0.0634 0.1080
Correlation coefficient, r 0.2668 0.4659
Standard deviation of estimate, 0712 0.1305 0.1769

f o0.0773 0.1397
Stadard deviation of a 0.0674 0.1355
Mean of y - ft 0.1577 0.2861
Standard deviation of y 0.1353 0.1992
Vor x 0.0045 0.0184
Var y 0.0183 0.0397
r

2  
0.0712 0.2171

1 - r 2  
0.9288 0.7629

%alsreasion model: f, a + b fv.

*m
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see if some simple and reasonable forms of the break curves approxi-

mately reproduce the observed data. The scope of this investigation

did not permit this suggestion to be pursued.

It is worth noting a couple of features of the breakpoint-hypothesis

modification characterized by Hypothesis 1). First, Hypothesis D re-

quires that the loser and the winner be identified by some means ex--

traneous to the model, and this precludes use of the modified breakpoint

model for predicting the winner. This is a serious drawback in terms

of the conventional uses of breakpoint-type hypotheses. Once the win-

ner has been determined, however, Hypothesis D could still be used to

find the casualty fractions on both sides. Once the winner has been

identified, perhaps by methods similar to those discussed in Ref. 16,

this can be done simply by entering the break curves (such as those of

Fig. 16, for example) with a random number on the ordinate, and read-

ing off the corresponding casualty-fraction values for the winner and

loser from the abscissa.

The second feature is that if we adopt Hypothesis D and also as-

sume that the T functions for the Category I and the Category II battles

are identical, as suggested by Fig. 15, then it can be shown that Hy-

pothesis B is untenable. The argument goes as follows. Suppose Hypoth-

esis D holds, that the T function for Category II is the same as that

for Category I, and that the break curves for Category II are the same

as those for Category I. Then the empirical casualty-fraction distribu-

tions for Category II would have to be the same as those for Category I.

But a superficial inspection of (a) and (b) of Fig. 14 reveals that the

empirical casualty-fraction distributions for Category II are not the

same as those for Category I. Application of the Kolmogorov-Smirnov

test to these data confirms the coruiton-sense observation that devia-

tions from equality at least as large as the ones observed would occur

by chance alone only about once in 107 times. This suggests that Hypoth-

esis B may be untenable at least to the extent of requiring that a dis-

tinction be maintained between Category I and Category II battles.

In Table 5 the average of f is almost exactly twice the average of

f w. This is of some interest,-since by (b) of Fig. 14 W(u)/u is also very

nearly equal to 2 for 0 ! u : r. However, since the connection between
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these two facts is not clear, the numerical agreement between these two

quantities may be purely coincidental. A further exploration of the

potential relation between these values was not within the scope of

this study.

Another fact, of more interest, since it is apparently more closely

related to this modification of the breakpoint hypothesis, is a finding

of Schmieman.(13) To describe this finding it is necessary to under-

stand that past investigators of combat data,(8l10) as well as Schmieman,

have devised "advantage" parameters that, on the basis of certain theo-

retical considerations, ought to be related to the winning or losing of

an engagement. All the advantage parameters that have been introduced

to date are functions of the casualty-fraction values only but depend

on which side's casualty fraction is chosen as the first variable. One

of the criteria of whether an advantage parameter adequately reflects

the relative advantage of the opposing forces in a battle is whether or

not its value agrees with the side that is observed to win the battle.

References 8 and 10, basing the selection of casualty-fraction values

on which side was the attacker and which the defender, found agreements

of 74 percent and 78 percent between the resulting advantage-parameter

values and the observed winning side. Schmieman has confirmed this,

finding an agreement of 79 percent between advantage-parameter values

and observed winners for this case. However, Schmieman went on to con-

sider two other cases, viz., when the casualty fractions are taken as

those of the larger and smaller force, respectively; and when the ca-

sualty fractions are taken as those of the winning and the losing side,
respectively. When casualty-fraction values were taken as those of the

larger and the smaJllr force, respectively, Schmieman again found an

agreement of 79 percent between the advantage-parameter values and the

observed winner. However, when he took casualty-fraction values as

those of the winner and the loser, respectively, the agreement between

the advantage-parameter value and the observed winner jumped to 97 per-

cent, or nearly perfect agreement. The modification of the breakpoint

hypothesis discussed in this section qualitatively accounts for this
phenomenon. An exploration of the quantitative agreement between Hy-

pothesis D and Schmieman's discovery was not within the scope of this

study.
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SECOND MODIFICATION OF THE BREAKPOINT HYPOTHESIS

Following the discussion of Lanchester's square-law equations as

given in Ref. 8, we write

dx/dt - -Dy

dy/dt - -Ax,

where x and y are the attacker's and defender's remaining troop strength,

respectively. By division, it follows that

2 1-a
2

1 - d2

where

2 (D/A) 22

a f- x

and

d- - f
y

Consequently, we may solve for f in terms of f and p asx y

¢ 2 _2y
fx - 1 1 - (2fy f ).

x y y

*
Here p is a positive constant as long as A and D are positive. It is
an index of the defener's advantage in the sense that if p N 1, f

x

reaches unity before f does, while if p < 1, f reaches unity be~ore
y y

That is, p is independent of the battle-time variable, t. But it
may take on different values in different battles.
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f does. When A and D are both positive, obviously f must be an in-x x

creasing function of fy, and this fact dictates the choice of the neg-

ative sign in the Lanchester relation connecting fx and fy, i.e., we

have

f - 1- l1  2(2f -f)2
x y - y

Accordingly, the corresponding functional relationship, tp, is defined

by the equation

ep(u) 3.- V- -

and

ep (v) - l- (2v-v).

Expanding the expression for cp(u) in a Maclaurin series yields

cp(u) - 2•2(2u - u 2) + j4u2 + HOT,

where HOT stands for higher-order terms. Simplifying, we can write

2
rp(u) - ) u + HOT.

If we linearize by neglecting the HOT, then we have approximately

S(u) = yu

with y 2 .

The point to this simplification is that we know something about

the distribution of p 2 from previous work( 8 ,10) and hence about the

distribution of y. Specifically, lnp is a stochastic function of the

force ratio x0 /yo, approximately defined by(8)

inp - 0.115 - 0.367 ln(xo/YO) + n,
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where n is a normally distributed random variable independent of (x0O),

having mean and standard deviation approximately equal to 0.297. The

force ratio itself is log-normally distributed, the mean of ln(x0 /y 0 )

being about 0.156, with a standard deviation of about 0.156. Using

these data with the rules for obtaining the distribution of sums of in-

dependent normally distributed random variables, we find that lnP is

normally distributed, with mean value about 0.057 and standard deviation

about 0.350. These values are based on a sample size of 92, so the

standard deviation of the mean is about equal to

0.350/ V91 2 E 0.04,

and we see that the mean is not significantly different from zero. In

what follows, we will, for simplicity, take lnp as being normally dis-

tributed, with zero mean and a standard deviation of about 0.35. Then,

of course, lny - 2 1np will be normally distributed with zero mean and

a standard deviation of about 0.7.

Thus, we expect, on the basis of the Lanchesterian model just in-

troduced, to have

lnfx M lny + lnfy

with lny distributed as just discussed. A calculation using data from
Ref. 8 shows that ln(f x/f y) hau a mean value of about 0.116 and a

standard deviation of 0.762. Again, the mean value is not significantly

different from zero. These values are close to twice those cited above

for lnp, which is what we expect, since

ln(fx /f) - lny - 21np.

Accordingly, our linearization of e by neglecting higher-order terms in

its series expansion appears to be an acceptable approximation. We as-

sume in what follows that lny is normally distributed with mean zero

and a standard deviation of about 0.76.

This amounts to introducing another version of Hypothesis C, which

we write out explicitly as Hypothesis E.
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Hypothesis E. The casualty fractions of the forces engaged in a

given battle are related to each other according to the following rela-

tion:

fx " Yf y

where y is a constant for any particular battle but is a random vari-

able that varies from battle to battle in a log-normal distribution

with parameters (0, 0.76).

With this interpretation of y as a log-normally distributed random

variable, Eqs. (E-l) through (E-4) of Appendix E must be considered as

giving formulae for conditional probabilities, given a particular value

of y. To emphasize this conditional dependence on y, we shall write

the right-hand side of Eq. (F-2) as A yx(q; Xx, Xyy 7), so that

P(fy < qWx (q; X y

where the left-hand side must be thought of as the defender's conditional

casualty-fraction distribution, given an attacker win and a particular

value of y. The usual transposition gives the dual formula. From Eq.

(E-4), we find

S< sW,) - A yx(y-s; X X, , Y)C(Y, s) + G(s, Y)

- (say) Axx(S; x Xy, Y),

which is to be interpreted as a conditional casualty-fraction distribu-

tion, given y and W x. The usual transposition gives the dual relation.

To find the corresponding unconditional casualty-fraction distribu-

tions requires an integration with respect to the probability element

of y. Thus, for example, we shall write

P(f < qjW A r 7 (q; X X , y) exp [-(lny) 2 /2 2 ]y- 1 dy

(say) Ay (q; Xx y
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where a - 0.76. Performing the usual transposition and then making
-1

the change u - y in the variable of integration yields

P(fx < qIWy) A•xy (q; Xy, Xx)

Analogously, we have

P(fx < sIWx) ; A ( X ' I y

and

P(f y< sjWy) - A (s; Xy ,y y yy y x)

where

A xx (9; y x X Axx(S; Xxx Ay, y) exp [-(ny) 2/2a 2 ]y- dy,S0

with a - 0.76.

Tables 6 through 11 present casualty-fraction distributions, com-

puted on the basis of exponential break curves and Hypothesis E, for

selected values of X and X . The numerical integration procedure em-x y
ployed is such that the second significant digit may occasionally be

in error. Tables 7 and 9 are duals of each other, as expected.

Casualty-fraction distributions for Xx 1, = a 3 are obtainable by

forming the dual of Table 10.

One noticeable feature of these theoretical results is that the

casualty-fraction distribution of the winner would plot on a graph (one

like part (a) of Fig. 14, for example) either below and to the right

of the loser's casualty-fraction distribution or, at any rate, only

very slightly above and to the left of it. Although the full range of

parameter values could not be explored within the scope of this inves-

tigation, the results available to date suggest that this property is

characteristic of the theoretical casualty-fraction distribution curves
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Table 6

SOME THEORETICAL CASUALTY-FRACTION

DISTRIBUTIONS FOR HYPOTHESIS E

x X

y y

q zz (q;X x) a Azz(q;X ,X y a

.000 .000 .000

.025 .059 .111

.050 .115 .208

.075 .167 .293

.100 .216 .368

.125 .261 .435

.150 .304 .493

.175 .344 .546

.200 .382 .592

.225 .418 .634

.250 .451 .671

.275 .481 .704
.300 .511 .734
.325 .538 .761
.350 .564 .785
.375 .588 .807
.400 .610 .826
.425 .631 .844
.450 .651 .860
.475 .670 .874
.500 .688 .887
.600 .748 .928
.700 .796 .956
.800 .834 .975
.900 .865 .988

1.000 1.000 1.000

P(W z)b 0.5 0.5

ayForx,x Xy A x(q;Xx,Xy). Ayy(q;Xxy)

bFor Xx - Xy P(Wx) - P(wy).
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Table 7

THEORETICAL CASUALTY-FRACTION DISTRIBUTIONS

FOR HYPOTHESIS E, X = 1, X - 2ax y

q A yx(q;Xxy Axx(q; xxy) A yy(q;X ,x x) A xy(q;X ,X )

.000 .000 .000 .000 .000

.025 .088 .090 .078 .090

.050 .169 .169 .149 .170

.075 .242 .240 .215 .241

.100 .309 .304 .275 .304

.125 .370 .362 .329 .361

.150 .426 .414 .380 .412

.175 .476 .461 .426 .458

.200 .522 .505 .468 .499

.225 .564 .544 .506 .536

.250 .603 .580 .542 .570

.275 .637 .612 .574 .601

.300 .669 .643 .604 .629

.325 .698 .670 .631 .654

.350 .724 .695 .656 .677

.375 .748 .719 .679 .698

.400 .770 .740 .700 .718

.425 .789 .760 .720 .735

.450 .808 .778 .737 .751

.475 .824 .795 .754 .766

.500 .839 .811 .769 .780

.600 .886 .863 .817 .823
.700 .919 .901 .852 .855
.800 .942 .930 .877 .878
.900 .958 .952 .894 .895

1.000 1.000 1.000 1.000 1.000

ap(W ) x 0.63; P(Wy) - 0.37.
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Table 8

THEORETICAL CASUALTY-FRACTION DISTRIBUTIONS

FOR HYPOTHESIS E, X = 1.5, X - 3x y

q A (q;X ) x (q;X y(q;X ) x A(q;X X)

.000 .000 .000 .000 .000

.025 123 .128 .116 .129

.050 .230 .235 .218 .236

.075 .323 .327 .307 .327

.100 .405 .405 .385 .405

.125 .477 .473 .454 .472
.150 .539 .532 .514 .530
.175 .595 .583 .568 .580
.200 .643 .629 .615 .624
.225 .686 .668 .656 .663
.250 .723 .704 .693 .697
.275 .757 .735 .725 .727
.300 .786 .763 .754 .753
.325 .812 .788 .780 .777
.350 .834 .810 .802 .798
.375 .854 .830 .822 .817
.400 .872 .848 .840 .833
.425 .888 .864 .856 .848
.450 .902 .878 .870 .862
.475 .914 .891 .882 .874
.500 .925 .903 .893 .885
.600 .958 .940 .927 .918
.700 .978 .965 .948 .941
.800 .991 .983 .961 .956
.900 .999 .995 .969 .967

1.000 1.000 1.000 1.000 1.000
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Table 9

THEORETICAL CASUALTY-FRACTION DISTRIBUTIONS

FOR HYPOTHESIS E, Xx - 2, )w - a
x y

q Ayx (q;XxX ) A xx(q;Xx,X ) A yy(q;X ,X ) Axy (q;Xx,X )

.000 .000 .000 .000 .000

.025 .090 .078 .090 .088

.050 .170 .149 .169 .169

.075 .241 .215 .240 .242

.100 .304 .275 .304 .309

.125 .361 .329 .362 .370

.150 .412 .380 .414 .426

.175 .458 .426 .461 .476

.200 .499 .468 .505 .522

.225 .536 .506 .544 .564

.250 .570 .542 .580 .603

.275 .601 .574 .612 .637

.300 .629 .604 .643 .669
.325 .654 .631 .670 .698
.350 .677 .656 .695 .724
•375 .698 .679 .719 .748
:400 .718 .700 .740 .770
.425 .735 .720 .760 .789
.450 .751 .737 .778 .808
.475 .766 .754 .795 .824
.500 .780 .769 .811 .839
.600 .823 .817 .863 .886
.700 .855 .852 .901 .919
.800 .878 .877 .930 .942
.900 .895 .894 .952 .958

1.000 1.000 1.000 1.000 1.000

aP(W) = 0.37; P(Wy) 0.63.
w y
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Table 10

THEORETICAL CASUALTY-FRACTION DISTRIBUTIONS

FOR HYPOTHESIS E, \ = 3, X " ia
x y

q A (q;X, y) (q;xx Ay (q;Xx,) Ay (q;X xA)

.000 .000 .000 .000 .000

.025 .116 .099 .118 .110

.050 .214 .188 .217 .208

.075 .298 .267 .303 .295

.100 .370 .338 .377 .373

.125 .432 .402 .441 .442

.150 .486 .459 .498 .504

.175 .534 .510 .548 .559

.200 .575 .555 .592 .608

.225 .612 .596 .632 .652

.250 .645 .633 .667 .691

.275 .674 .665 .699 .726

.300 .701 .695 .727 .757

.325 .724 .721 .753 .784

.350 .745 .744 .776 .809

.375 .764 .765 .797 .831

.400 .781 .784 .817 .850

.425 .796 .801 .834 .868

.450 .810 .816 .850 .883

.475 .823 .830 .864 .897

.500 .834 .842 .877 .909

.600 .870 .879 .920 .946

.700 .895 .903 .950 .970

.800 .913 .919 .972 .985

.900 .926 .929 .989 .994
1.000 1.000 1.000 1.000 1.000

aP(wx) - 0.29; P(Wy) y 0.71.

x y
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Table 11

THEORETICAL CASUALTY-FRACTION DISTRIBUTIONS

FOR HYPOTHESIS E, X = 6, \ = 0 . 7 5 a

x y

q Ayx(q ;XAy) Axx(q ;Xxy) Ayy(q ;Xxy) Axy(q;XxAy)

qAyx ( ; px y Axx ( ; xx y Ayy (q ) Xx y Axy ( ; px y

.000 .000 .000 .000 .000

.025 .187 .156 .189 .166

.050 .326 .287 .329 .306

.075 .432 .397 .437 .422

.100 .516 .490 .524 .520

.125 .584 .567 .593 .602
.150 .638 .632 .651 .671
.175 .684 .687 .699 .728
.200 .721 .733 .739 .776
.225 .753 .771 .773 .816
.250 .780 .803 .802 .849
.275 .803 .830 .827 .877
.300 .823 .853 .849 .901
.325 .840 .872 .868 .920
.350 .855 .887 .885 .936
.375 .868 .901 .899 .950
.400 .879 .912 .912 .961
.425 .889 .921 .923 .970
.450 .898 .929 .934 .978
.475 .905 .935 .943 .985
.500 .912 .941 .951 .990
.600 .933 .955 .975 1.004
.700 .947 .961 .992 1.011
.800 .956 .965 1.003 1.014
.900 .963 .966 1.011 1.016

1.000 1.000 1.000 1.000 1.000

aP(W ) 0.14; P(Wy) = 0.86.
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obtainable from Hypothesis E. However, the empirical data (see Fig. 14)

indicate that the loser's casualty-fraction curve is distinctly to the

right and below that of the winner, and so is in conflict with the con-

sequences of Hypothe3is E so far explored. This is not a very auspi-

cious prospect for the second modification of the breakpoint hypothesis,

and so it will not be further explored here.

THIRD MODIFICATION OF THE BREAKPOINT HYPOTHESIS

A third possible modification of the breakpoint hypothesis would

be to give up Hypothesis B and permit the break curves themselves to

vary depending on the class or type of battle that is under study.

This modification will not be fully worked out here because it is be-

yond the scope of the study. However, some preliminary observations

are offered.

The immediate question for this modification of the breakpoint hy-

pothesis is whether or not the various break curves for the several

types of battles can be combined to produce an aggregate or composite

break curve valid for the whole universe of battles. For example, sup-

puce that Fi(x) is the break curve for battles of type i, and that bat-

tles of type i occur with relative frequency ni/N, where N is the total

number of battles in some data sample. Suppose we construct a new prob-

ability distribution function by a weighted-average break curve using

the formula

i-K

F(x) - (1/N) nniFi(x),
i- 1

where K is the number of distinct types of battles. Is it true that

the observed casualty-fraction distributions can be determined by F(x)

without reference to the individual Fi? If so, then the original clas-

sification of battles into several types, each with its peculiar break

curve would merely be introducing a distinction without a difference.

However, a scan of the basic formulae in Appendix D shows no evident

reason for believing that a simple average would produce a composite
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break curve capable of generating casualty-fraction distributions ap-

plicable to the entire set of battles. Whether or not some other method

of arriving at such a composite break curve gould succeed is perhaps

doubtful, but not completely resolved.

A second feature of a modified breakpoint hypothesis such as this

is that (unless some composite break curve is appropriate--in which

case the modification is no different from the original) confronting

the hypothesis with empirical data requires subdividing the data into

smaller groupings corresponding to the several battle types. This op-

eration often reduces the ability of statistical tests to discriminate

against the hypothesis when it is fallacious. For instance, consider

the extreme case where each battle of the sample is supposed to belong

to its own separate battle type--possibly on the romantic assumption

that every battle is unique. Then there is no way in which the hypoth-

esis can be disconfirmed by the data, and this is the case whether or

not the hypothesis is valid. Less extreme cases than this tend to

diminish, to a greater or lesser extent, the ability of statistical

methods to detect an invalid hypothesis. As a result, anyone seri-

ously proposing such a hypothesis should take care either to advance

a hypothesis without too many distinct battle types, or to expand the

size of the data sample in order to restore the sensitivity of the

statistical procedure to a reasonable level.

There is an interestingly different and suggestive way of looking

at breakpoint hypotheses of the sort represented by this modification.

It can be introduced by considering that the process of classifying

battles by type and hypothesizing distinct break curves for the various

types will ip8o facto generate a certain amount of stochastic depend-

ence over the universe of all battles between the break level selected

for one side and that selected for the opponent. Viewing the third

modification of the breakpoint hypothesis as a special case of depend-

ence between the casualty fractions on both sides (as distinct from

the assumptions of Hypothesis A) may or may not be helpful in a prac-

tical sense, but it sheds light on the nature of the assumption being

made.
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MINIMAL REQUIREMENTS FOR A BATTLE TERMINATION THEORY

The properties that a satisfactory theory of battle termination

should possess seem to include at least the following:

1. The theory should have a simplicity and "naturalness" of form

in consonance with the principle of Ockham's Razor (William of Ockham,

1280-1349 A.D.) that "multiplicity ought not to be posited without

necessity."

2. It must reproduce the observed quasi-exponential shape of em-

pirical casualty distribution curves.

3. The winner's casualty-fraction distribution curve must lie

above and to the left of the loser's casualty-fraction distribution

curve, i~e.,

P(fzW) Azz > Az' = P(fz '1Wz),

where z - x or y, and z' - y or x, respectively.

4. The theory must address the separate casualty distribution

curves observed for the Category I and the Category II battles.

5. The theory must not produce an estimate of the T function re-

lating casualty fractions via the relations

f x Y(f )

or

f, - T(f W)

that is at variance with the actual relations between these quantities.

6. The theory ought to explain why the loser's and the winner's

casualty-fraction distributions are very nearly the same, independent

of the attack/defense status of forces, i.e., it should explain why

Eqs. (12) and (13) are approximately satisfied.

7. It would be helpful if the theory were useful for determining

the winners of simulated battles, as well as for determining the casu-

alty levels on both sides at the conclusion of simulated engagements.

S.,.. ,'
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In the foregoing, we have considered a primary breakpoint hypothe-

sis and sketched three modified versions of it. Of these different

versions of the breakpoint hypothesis, the one that most nearly satis-

fies the desiderata listed above seems to be the first modification

presented. However, this modification fails to satisfy desiderata 5

and 7. Versions of the breakpoint hypothesis proposed in the forego-

ing that were closer to the kind normally used in war games, simula-

tions, and maneuver control were even less satisfactory in explaining

observed battle termination phenomena. Consequently, it seems that

the soundness of models of combat that make essential use of breakpoint

hypotheses must be considered suspect until a better theoretical under-

standing of the battle termination process is obtained.

* - ~ 'A..- .1
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Appendix A

SALTUS-FUNCTION MANIPULATIONS

The saltus-function (a-function) and the delta-function (6-function)

enable a consistent formalism to be employed in formulae which would

otherwise have to be treated by an exhaustive tabulation of cases. We

present here a brief collection of some of the elementary properties of

the a-function, which is defined by

0, if x < a

o(x, a)- ai. (A-i)
i, if Y. > a

The properties of this function are intimately related to those of the

Dirac 6-function, which may be nonrigorously defined by the relation

x

o(x, a) - f6(t, a) dt. (A-2)

The following relations are obvious:

a(x, a) - a(x - a, 0) (A-3.1)

1 1 - a(a, x) (A-3.2)

a a(x + y, a + y) (A-3.3)

"a (-a, -x) (A-3.4)

o(cx, ca) = o(x, a)a(c, 0) + o(a, x)o(0, c). (A-4)

If c # 0, then

o(cx, a) -o(x, ac- )o(c, 0) + a(ac-, x)a(0, c) (A-5)
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and

o(x, c) a o(xCI, 1)a(c, 0) + a(l, xc -)(0, c). (A-6)

Definition. If a function m satisfies the relation

m(x) = f(x)a(a, x) + f(a)o(x, a),

then m is said to be a mixture on f at a.

If g is any function, and w is a mixture on f at a, then

g(m(x)) = g(f(x))o(a, x) + g(f(a))o(x, a), (A-7)

i.e., g o m is a mixture on g o f at a, where "o" denotes functional

composition.

By virtue of our convention that distribution functions are de-

fined by the limit from the right, all upper limits in integrals must

be taken as limits from the right, so that, e.g.,

b b+O7 f (u) 6(u,. c) du F f f(u) 6(u, c) du

a a

"f(c)[o(b + 0, c) - c(a, c)]. (A-8)

The most common application we shall make of relation (A-8) is for

the case in which a - 0, c > 0, and f(u) - a(du, e). For this case

(A-8) reduces to

b+0

f a(du, e)6(u, c) du - a(dc, e)o(b + 0, c). (A-9)
0
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Another integral formula of some value, valid when b > a, is

b+O

f f(u)c(u, c) du " F(b + O)o(b + 0, c) - F(a)a(a, c)

a

F(c)[a(b + 0, c) - a (a, c)]

- [F(b + 0) - F(c)J](b + 0, c)

+ [F(c) - F(a)]o(a, c) (A-10)

where F is any indefinite integral of f. In particular,

b+O

J f(u)o(u, c) du - 0, for b - c and F continu-

0 ous from the right at b. (A-lI)



-66-

Appendix B

A JOSS PROGRAM FOR THE CONPUTATION OF CASUALTY-FRACTION

DISTRIBUTIONS FOR EXPONENTIAL BREAK CURVES

The JOSS program for the computation of casualty-fraction distribu-

tions for exponential break curves is presented in this appendix. It

is based on the discussion of casualty-fraction distributions for Ex-

ample 3 (exponential breakpoints) in Appendix E. Because of JOSS pro-

gram conventions, the following equivalents were established for use

only in this computer routine:

Notation in Notation in
Text Computer Routine

X
x

y y

Y

o(u, v) s(u,v)

y_ 1P(u) t(g,u)
T(u) P(g,u)

T_-1 (u) p (g, u)

P(Wx)dy(uFW) m (x ysgtu)

P(fy < uW x) a(x~ygu)

y I
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THE JOSS PROGRAM

Type all.

1.001 Do part 10.
1.01 Demand x as "Lambda sub x".
1.02 Demand y as "Lambda sub y".
1.03 Demand g as "Gamma".
1.04 Do part 2 for u = 0(0.02)0.5(0.10)1.
1.05 To part 3.

2.01 Set A(0lOu) - a(x,y,g,u).
2.02 Set B(100.u) - a(x,y,g,p(g,u)).
2.03 Set C(100'u) = a(y,x,g*(-l),u).
2.04 Set D(100.u) - a(y,x,g*(-l),P(g,u)).

3.01 Page.
3.02 Type x,y,g in form 1.
3.03 Line.
3.04 Type form 2.
3.05 Do step 3.08 for u - 0(0.02)0.5(0.10)1.
3.051 Type m(xy,g,l) in form 4.
3.06 Page.
3.07 To step 1.01.
3.08 Type u, B(100.u), A(100lu), C(100'u), D(100'u) in form 3.

10.1 Let s(u,v) = [u<v:0;u-v:0.5;u>v:l].
10.2 Let t(g,u) - Fug*(-l):u;g*(-l)].
10.3 Let P(g,u) = g.t(g,u).
10.4 Let p(g,u) - g*(-l).t(g*(-1),u).
10.5 Let r(x,y,g,u) - y'[l-exp(-(y+g'x).t(g,u))]/(y+g.x).
10.6 Let n(x,y,g,u) - exp[-(y+g.x)].s(l,g).[u<1:0; 1].
10.7 Let m(xy,g,u) = r(x,y,g,u) + n(x,y,g,u).
10.8 Let a(x,y,g,u) = m(x,y,g,u)/m(x,y,g,l).

Form 1:
Lambda sub x - -; Lambda sub y -. ; Gamma -

Form 2:
u P(fx<uIWx) P(fy<u Wx) P(fx<uiWy) P(fy<uIWy)

Form 3:

Form 4:
P(W) - •

x -
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Arpendix C

DERIVATION OF BREAK CURVES FROM A CONTINUOUS

MODEL OF DECISION BEHAVIOR

We suppose that there is a function, X(h, f), that gives the prob-

ability that a side with a casualty fraction equal to f will continue

to fight to a casualty fraction of f + h. Clearly, X must satisfy

X(O, f) - 1, for 0 c f g 1. (C-1)

If F(f) is the probability that the side breaks at a casualty-fraction

value teas than f, then we have the relation

1 - F(f + h) - X(h, f)[1 - F(f)]. (C-2)

Subtracting 1 - F(f) from both sides of Eq. (C-2), dividing by h and

taking the limit as h approaches zero, we find by invoking Eq. (C-l)

that

dF/df - -X(f)[F(f) - lJ, (C-3)

where we have made the notational change

-%x(h. -

ah (C-4)

h- 0

Integration of Eq. (C-3), subject to the initial condition that

F(O) - 0,

yields

f

F(f) - 1 - exp [-f f (t) dt] (C-5)

0
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for the side's break curve. IF X(t) has a finite number of simple jump

discontinuities, we should take f + 0 as the upper limit of integration

in Eq. (C-5). Because of the convention that F(l + 0) - 1, we must

either have

1+0

exp [- X(t) dt] - 0 (C-6)

0

or introduce an ad hoc term to give F(l + 0) - 1.
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Appendix D

COLLECTION OF BASIC FORMULAE RESULTS

P (W) f F QY(u)) dF (U) (D- 1)

0

1

-,W [1rFy(- F (v) d (v))]d() (D-3)

0

1

[1w) - JFuf1(v) dF v)) (D-3)

0

d U )-f [1 - F ( YI(u)) ] dF (u) PL l (D-5)

j x yx

dDf <(IW ) - 1 T- dF (u)I P( L < T-(~w 6() (D-7)
xx x y y xx

PD(f lw < IV)mD(qW)- (D-8)

dD(vW - [Iw 1- F y('P1(v))] dF x(V) - P(L - vIy D8

Pfx< sIw y) - D x(slw ) A x(s) (D-9)

P(f y < qIW y) - D X('(q)W 1w) P(f X < 'P(q)fW) - A yy(q) (D-10)
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Appendix E

ILLUSTRATIVE EXAMPLES

The breakpoint model (Hypotheses A, B, and C) is illustrated below

by working out some simplified examples. The purpose here is to make

sure that the model gives results in these simpler cases that agree

with the intuitive implications of the assumptions made.

EXAMPLE 1: FIXED BREAKPOINTS

appose that side z is sure to break off the attack at a casualty-

fraction value of k , but not before. Then we can write the break

curves as

Fz (u) - a(u, kz),

where a is the step, or saltus, function defined by

0, for x < a

o(x, a) - , for x = a

1, for x > a

and 0 < k c 1. Appendix A develops some of the calculus of such func-z

tions. However, for Example 1 it is perhaps as convenient to proceed

on the basis of informal considerations.

We proceed to find

1

P(Wy) f Fx(J(u)) dFy(u)

0

1+0
"f/ cr(T(u), kx)6(u, ky) du

0

= a(T(ky), k),
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where the last line follows from formula (A-8) of Appendix A, since

0 < k c 1.
y
Also

1

P(W) - f Fy(T-l(v)) dFx(v)

0

1+0

Sf O(T-l(v), k,)6(v, kx) dv

0

= a(F- (kx), kcy)
x y

r a(kx, T(k v))*

which by Eq. (A-3.2) ip equivalent to 1 - P(W y), as it should be.

We proceed to form

q

D y(qW x)P(Wx) - 11[ -Fx((u)) dFy(u)

0

q+O

-[1- oa(V(u), kx)]6(u, ky) du

- [1 - a(T(k ), k X)]o(q + 0, k y).

Now, in order that P(W ) > 0, we must have kx > '(k ), in which case the

first factor on the right-hand side will be unity. Hence we may write

Dy qW) - aq q + 0, k - o(q + 0, ky).
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Accordingly, we have

P(fy < qIWx) - Dy(qjWx) " a(q + 0, ky)

and

P(fx < SBWx) " DY(Y-1 (s)IWx)

- 1(•-l(s) + 0, k )

M a(s + 0, Y(k y)).

That is, fy - ky and fx = Y(k y), with probabilitv one. But that

is exactly what we expect in this example kfhen x wins.

Similarly,

P(Wy) Dx (SJW) -J l -F (Tl(v))JdFx(v)

0

8+0

-f [I - (Y-l (v), k.)'J6(v, kx)dv

0

- [1- o('-I (kx), k y)](s + 0, k X).

For y to win, we must have kx ! T(k y), in which case the first factor

on the right-hand side will be non-zero, and we may write

D x(sjW) - a(s + 0, k)-

Accordingly, we have

P(f X < sJW y D x (sIW) Y o(s + 0, kx)

y xi
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and

P(fy < qW y) - VxD((q) IWy)

- a('(q) + 0, k x) a a(q + 0, ' -l(k x))

That is, fx kx and fy - 1 (k ), with probability one. But this is
exactly what we expect in this example when y wins.

EXAMPLE 2: UNIFORM BREAKPOINTS

Suppose that each side is equally likely to break off the engage-

ment at any point, i.e., we suppose that

F z(u) - u, for 0 c u c 1.

We will also suppose that rp(u) - yu, so that T(u) = yuo(y-, u) + a(u, y-)

and I-1(u) - y- ua(y, u) + a(u, y) for 0 r u : 1. Here, y is some posi-

tive constant of proportionality.

We proceed to find

1

P(Wy) f Fx(Y(u)) dFy(u)

0

- jyal, y) + (J "- + 1 - y-)o(y, 1)

- ya(l, y) + (i - )Y-l , 1).

Also

01

P(W) -f F(-l~v)dxV

f TJ 1 ((v) dv

0 -1

- .y -olC , y -) + (1 - -y) o(y - 1 )
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We form

q

P(W ) Dy(qIW) - f [1 - Fx(Y(u))] dFy (u)

0

f [I - T'(u)] du

0

q

f [1 - yua(y-I, u) - ca(u, Y-i) du

0

(q -yq )C(Y- , q) + e-1y (q, y-).

The right-hand side reduces to the previous expression for P(W ) when q = 1,

as it should.

Similarly, we form

P(Wy) Dx(SjWy f [1 - Fy(T-l(v))I dFx(V)
0

-f [I - Y-1 (v)] dv

0

- (s - s7-Ia2)a(Y, 8) + ýyo(s, Y),

which reduces to the previous expression for P(W ) when q - 1, as it

should. When y - 1, T(u) - qp(u) - u for 0 s u g 1, and P(W x) = P(Wy) =

In this example, as in the preceding one, it is not necessary to
use the formal manipulations of the saltus functions presented in Ap-
pendix A. It is easier to use instead the definition of the saltus
function directly, keeping the various cases in mind as one proceeds.
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and we have P(fy < qJW) " P(fx < qJWx) -P(f < qjWy) = P(fx < qiWy) -

2q - q .

Example 2.1 (y ? 1)

When y > 1, we have

P(W ) - 1 - 1y

y 2y - (2y)

P(Wx) - jy-1 = (2y)-1

P(f < q[Wx) = Dy (qjWx)

" y(2q - yq 2 )(y- 1 , q) + o(q, y- )

[2(qy) - (qy) 2o(y I q) + o(q, y I)

1~~ -l -2 2-1-

P(fx < s1W) x Dy (YI1 (s)Wx) - y(2(y Is) - yy s 2)o(y-l(y-1s))

+ o((y-s), y-),

and by Eq. (A-4) in Appendix A this reduces to

- y(2sy - s 2y- )(1, s)

+ C(s, 1)

"- (2s - s2)o(l, S) + o(s, 1)

2
"- 2s- s.

It is interesting to note that when y > 1, the conditional dis-

tribution of attacker casualty fraction given an attacker win is in-

dependent of the proportionality factor, y.
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In similar fashion, we find

P(fx < SEWy) Dx(sjWy)

(s- y-1,s2)

1 -.

2ys - s2

2y - 1

And also

P(fy < q1Wy D x ( y(q)IWy

(2y - ) 1{2yY(q) - y2(q)}

"(2y - 1)-{[2yyq - (yq) 2la(y-l q)

+ [ 2 y - lo(q, y-l)}

22y(yq) - (yq) 2 (-1(q, y- 1

"2 y - 1

Note that all of these formulae will reduce to those for the case

in which y - 1 upon setting y 1.

Example 2.2 (y : 1)

When y < 1,

P(W y) -iy

P(W ) " 1 -y

P(f < qjW ) D (q- W " 2

2 -y

.
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F(fx < sIWX) = Dy ( -1(s)JWX)

2 -l-1(s) 1 y Q• - (s))2
2 -y

2 1 -1 -y(Y s) 20a(y, s) + o(s, y).
2 y
2 .- Y

Likewise,

P(f x < 81Wy) D Dx(SW y)

- (s- iy-1s2)G(ý s) + ýYa(s. Y)

"[ 2(y- 1s) - (y-Is) 2] a(y, s) + G(s, Y)

P(f y < qW y) D Dx(T(q)IW y)

[2(-il T(q)) - (y-I J(q)) 2 ]a(y, T(q)) + cr(J(q), y)

[2(-17q -1yq 2
- [2(y yq) - (y(yq)2 ](y, yq) + a(yq, y)

- [2q - q2])(l, q) + cr(q, 1)

- 2q - q2.

And, symmetrically related to a previous resuli., the conditional

distribution of defender casualty fractions when the defender wins is

independent of the proportionality factor, y. As is true for the case

in which y > 1, these results will reduce to those for the case in which

y - 1 simply by taking y - 1.

EXAMPLE 3: EXPONENTIAL BREAKPOINTS

Suppose that each side's break curve Is given by an exponential
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function

-Au -xz z
F z(u) - 1 - e + e o(u, 1), 0 C u 1i,

-X u -X
dF z(U) ( [ze z + e Z6(u, 1)] du,

where the last term is inserted to make F (1 + 0) - 1, and so to cure

the defect of the distribution

-A u
l-e z

*Q

at u 1.

We shall also suppose that

CP(u) yu

as we did for Example 2.

We proceed to find

1+0

P(Wy) -f F,('(u)) dFy(u)

0

1+0 -Xx • (u) -•X I
f [1i- e x + e xa(T(u),1)

-A u -A
[Xy e Y du + e Y6(u, 1) du].

It also, somewhat regrettably, has the effect of attaching a fi-
nite probability to the event "force z fights to complete annihilation,"
by way of the 6-function term in dF . One way to avoid this would have
been to simply rescale Fz by a factor, e.g., set Fz - (1 - e-xzu)/
(I - e-Xz). This apparently simpler and more natural technique will
not be developed here.
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We proceed by first taking y c 1, and finding the value of

q+O

P(Wx) Dy (qIWx) i [I- Fx(Y(u))] dFy(u)

0

q+0 -AxY -Xq+ [e -x YU e_ (- [ - e XO(yu, 1)]

0

-X u -A
[Xye Y + e YA(u, 1)] du

A I - (Ay+YAx) Y-1 (q

-+ YXX I

+ e X a(l, y)a(q + 0, 1).

The value of P(Wx) can be found by taking q = 1 in the above, since

D y(iW x) must equal unity. Hence P(fy < qIWx) - D y(qW x) is given by

dividing the right-hand side of the last equality by the value obtained

by setting q - 1 in the same expression. Then we can find

P(fx < -1W ) - Dy(•-l(s)jW )

where T- (s) - yI sa(y, s) + c(s, y), because T-I is a mixture on y- s

at y. By fact (A-7) in Appendix A, and since D (iWx) 1, we obtain
-1y x

P(fx < S8W) x P(fy < ys1SWx)a(Y' s) + a(s, y).
When side y wins, we find similarly

TIN~~ ~ ~ ~ ) sWY - (X y+YX X)T_-l(s)

P(Wy) D(IW) - +Xy + YX -

+ e-(x+ -i) (l, y)(s + 0, 1),

Throughout this example, frequent use is made of the results in
Appendix A. Particularly heavy use is made of formula (A-9), The details
are straightforward, though somewhat tedious.
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and

P(fx < sJW) - Dx(s1Wy)

can be found by the same method used above to obtain P(fx < sJWx)

Likewise, we obtain

P(fy < qJWy) -x(T(q)IWy

We work out the results for y : 1 in analogous fashion. Whether

or not y < 1, y - 1, or y > 1, we have in any event

P(W) D (qW 1 - e(Ay+YAx)Y- 1 (q))

y X

-( (X+yAx)

+ e ( ' c)(l, y)cl(q + 0, 1) (E-1)

and a similar formula for P(W ) D (q[W ) obtainable from the one for
y x y -1 -1

P(W x) D y(qW x) by the mapping* x ÷ y, y S x, y , y-s, ' T - T, andy x-1 -1

T-I + '. Here '(q) - yqo(y , q) + a(q, y ), so by relation (D-6) of

Appendix D,

P(fy < qW) - Dy (qJWX)

A I -(AY+yAx) - () -(.+Yx
X 1 - eYx 1 + e (y+YX(l, y)a(q + 0, 1)

- Y+ e 1y
A ( - -( Y )e ~) + e-(A Y+y)o(,y

S+ Y X

(E-2)

This interchange of symbols in any expression, formula, etc., will
be called the "usual transposition." The object to which the usual trans-
position is applied will be called the "primal object." The result of
applying the usual transposition to the primal will be called the "dual."
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with a similar formula for P(fx < qW y) dual to (E-2) obtainable by the

usual transposition. From relation (D-7) of Appendix D we obtain

P(fx < sIWx) - Dy ('-l(s) IWx) - P(fy < T_-l (s)1Wx), (E-3)

-l-1s( -i

where -1(s) - y sa(y, s) + a(s, y), and so is a mixture on y s.

Then by Eq. (A-7) we may write

P(fx < sjW ) P(fy < Y-1SfWx)y(Y, s) + a(s, y), (E-4)

with an analogous dual formula obtainable from this one by the usual

transposition. A JOSS program for the computation of theoretical

casualty-fraction distributions for this example is included as Appen-

dix B. This program was used to generate the following tables of values

(Tables E-1 through E-5). Some of these distributions are illustrated

in Fig. E-1.
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Table E-1

THEORETICAL CASUALTY-FRACTION DISTRIBUTIONa

(y 1, A - x - X)
x y

P(fz<ufWZ)

u X-10 X-5 X-3 X-2

.000 .0000 .0000 .0000 .0000

.020 .3297 .1813 .1131 .0769
.040 .5507 .3297 .2134 .1479
.060 .6988 .4512 .3023 .2134
.080 .7981 .5507 .3812 .2739
.100 .8647 .6321 .4512 .3297
.120 .9093 .6988 .5132 .3812
.140 .9392 .7534 .5683 .4288
.160 .9592 .7981 .6171 .4727
.180 .9727 .8347 .6604 .5132
.200 .8647 .6988 .5507
.220 .8892 .7329 .5852
.240 .9093 .7631 .6171
.260 .9257 .7899 .6465
.280 .9392 .8136 .6737
.300 .9502 .8347 .6988
.320 .9592 .8534 .7220
.340 .8700 .7433
.360 .8847 .7631
.380 .8977 .7813
.400 .9093 .7981
.420 .9195 .8136
.440 .9286 .8280
.460 .9367 .8412
.480 .9439 .8534
.500 .9502 .8647
.600 .9727 .9093
.700 .9850 .9392
.800 .9592
.900 .9727

1.000 1.0000

a[P(fx<ulWx) - P(f <ulWx) P(fx<ulJw P(fy<U)W

P(W) P(Wy) W i/2].y Wy) ,
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Table E-2

THEORETICAL CASUALTY-FRACTION DISTRIBUTIONa

(Ax 2.000; X = 2.000; y = 1.500)

P(fx<ulWx) P(fy<ulWx) P(fx<u[W ) P(fy<<ulW )

.000 .0000 .0000 .0000 .0000

.020 .0669 .0987 .0630 .0930
.040 .1294 .1880 .1219 .1771

.060 .1880 .2688 .1771 .2532

.080 .2427 .3419 .2286 .3220

.100 .2940 .4080 .2769 .3843

.120 .3419 .4679 .3220 .4407

.140 .3867 .5220 .3642 .4917

.160 .4286 .5710 .4038 .5379
.180 .4679 .6154 .4407 .5796

.200 .5046 .6555 .4753 .6174

.220 .5389 .6918 .5076 .6516

.240 .5710 .7247 .5379 .6826
.260 .6011 .7544 ,5662 .7106

.280 .6292 .7813 .5927 .7359

.300 .6555 .8036 .6174 .7588

.320 .6801 .8276 .6406 .7796

.340 .7031 .8476 .6623 .7983

.360 .7247 .8656 .6826 .8153

.380 .7448 .8819 .7015 .8307

.400 .7636 .8967 .7193 .8446

.420 .7813 .9100 .7359 .8572
.440 .7978 .9221 .7514 .8685
.460 .8132 .9330 .7660 .8788
.480 .8276 .9429 .7796 .8882
.500 .8411 .9519 .7923 .8966
.600 .8967 .9854 .8446 .9281

.700 .9364 1.0000 .8821 1.0000

.800 .9649 1.0000 .9089 1.0000

.900 .9854 1.0000 .9281 1.0000
1.000 o0o0 1.0000 1.0000 1.0000

ap(w) 0.385730402.

xd
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Table E-3

THEORETICAL CASUALTY-FRACTION DISTRIBUTIONa

- 2.500; X = 2.500; y - 1.500)

u P(fx<u IWx) P(f yjulWx) p(f x<uIW P(f y<UIW )

.000 .0000 .0000 .0000 .0000
.020 .0812 .1194 .0791 .1163
.040 .1559 .2247 .1519 .2189
.060 .2247 .3176 .2189 .3095
.080 .2879 .3997 .2806 .3894
.100 .3461 .4721 .3373 .4600
.120 .3997 .5359 .3894 .5222
.140 .4489 .5923 .4374 .5772
.160 .4942 .6421 .4816 .6257
.180 .5359 .6860 .5222 .6684
.200 .5743 .7247 .5596 .7062
.220 .6096 .7589 .5940 .7395
.240 .6421 .7891 .6257 .7689
.260 .6720 .8157 .6548 .7949
.280 .6994 .8392 .6816 .8178
.300 .7247 .8600 .7062 .8380
.320 .7480 .8783 .7289 .8558
.340 .7694 .8944 .7497 .8716
.360 .7891 .9087 .7689 .8854
.380 .8072 .9213 .7866 .8977
.400 .8239 .9324 .8028 .9085
.420 .8392 .9422 .8178 .9181
.440 .8534 .9508 .8315 .9265
.460 .8663 .9584 .8442 .9339
.480 .8783 .9652 .8558 .9405
.500 .8893 .9711 .8665 .9463
.600 .9324 .9919 .9085 .9665
.700 .9608 1.0000 .9362 1.0000
.800 .9795 1.0000 .9545 1.0000
.900 .9919 1.0000 .9665 1.0000

1.000 1.0000 1.0000 1.0000 1.0000
ap(w) - 0.393798459.
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Table E-4

THEORETICAL CASUALTY-FRACTION DISTRIBUTIONa

( -x n 2.000; X - 2.000; y - 0.667)

u P(f<ul W) P(fy<ulw x P(f <uIw P(f yulw )

.000 .0000 .0000 .0000 .0000

.020 .0930 .0630 .0987 .0669

.040 .1771 .1219 .1880 .1294

.060 .2532 .1771 .2688 .1880

.080 .3220 .2286 .3419 .2427

.100 .3843 .2769 .4080 .2940
.120 .4407 .3220 .4679 .3419
.140 .4917 .3642 .5220 .3867
.160 .5379 .4038 .5710 .4286
.180 .5796 .4407 .6154 .4679
.200 .6174 .4753 .6555 .5046
.220 .6516 .5076 .6918 .5389
.240 .6826 .5379 .7247 .5710
.260 .7106 .5662 .7544 .6011
.280 .7359 .5927 .7813 .6292
.300 .7588 .6174 .8056 .6555
.320 .7796 .6406 .8276 .6801
.340 .7983 .6623 .8476 .7031
.360 .8153 .6826 .8656 .7247
.380 .8307 .7015 .8819 .7448
.400 .8446 .7193 .8967 .7636
.420 .8572 .7359 .9100 .7813
.440 .8685 .7514 .9221 .7978
.460 .8788 .7660 .9330 .8132
.480 .S882 .7796 .9429 .8276
.500 .8966 .7923 .9519 .8411
.600 .9281 .8446 .9854 .8967
.700 1.0000 .8821 1.0000 .9364
.800 1.0000 .9089 1.0000 .9649
.900 1.0000 .9281 1.0000 .9854

1.000 1.0000 1.0000 1.0000 1.0000

aP(W) - 0.614269595.
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Table E-5

THEORETICAL CASUALTY-FRACTION DISTRIBUTIONa

(x" 2.500; Xy* 2.500; y - 0.667)

u P(fx<uIWx) P(fy<uIW ) P(fx<ulWy) P(fy<ulWy)

.000 .0000 .0000 .0000 .0000

.020 .1163 .0791 .1194 .0812

.040 .2189 .1519 .2247 .1559

.060 .3095 .2189 .3176 .2247

.080 .3894 .2806 .3997 .2879

.100 .4600 .3373 .4721 .3461

.120 .5222 .3894 .5359 .3997

.140 .5772 .4374 .5923 .4489

.160 .6257 .4816 .6421 .4942

.180 .6684 .5222 .6860 .5359

.200 .7062 .5596 .7247 .5743

.220 .7395 .5940 .7589 .6096

.240 .7689 .6257 .7891 .6421

.260 .7949 .6548 .8157 .6720

.280 .8178 .6816 .8392 .6994

.300 .8380 .7062 .8600 .7247

.320 .8558 .7289 .8783 .7480

.340 .8716 .7497 .8944 .7694
.360 .8854 .7689 .9087 .7891
.380 .8977 .7866 .9213 .8072
.400 .9085 .8028 .9324 .8239
.420 .9181 .8178 .9422 .8392
.440 .9265 .8315 .9508 .8534
.460 .9339 .8442 .9584 .8663
.480 .9405 .8558 .9652 .8783
.500 .9463 .8665 .9711 .8893
.600 .9665 .9085 .9919 .9324
.700 1.0000 .9362 1.0000 .9608
.800 1.0000 .9545 1.0000 .9795
.900 1.0000 .9665 1.0000 .9919

1.000 1.oo0 1.0000 1.0000 1.0000

P(Wx) 0.60620154.
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Appendix F

A REVIEW OF SOME CASUALTY-FRACTION DATA

Some of the available casualty-fraction distribution data are

exhibited in Fig. F-i. Such backup data for this figure as have not

been previously presented are given in Tables F-I through F-3. Several

additional casualty-fraction distributions can be found in Refs. 17

and 18, but these distributions give the casualty-fraction distribu-

tions for one side only, and so do not suffice for the quantitative

test of breakpoint hypotheses. It is interesting to note, though,

that the casualty-fraction distributions given in those references

illustrate the same general form as those in Fig. F-I, a shape that

Robert J. Best of the Research Analysis Corporation has called "quasi-

exponential." Best found the same qualitative shape in distributions

of daily casualty incidence for units from rifle companies to Army

groups, although the quantitative characteristics of these distribu-

tions are different for units of markedly different sizes.

Some additional data from Ref. 4 are shown in Fig. F-2. The three

types of breaks displayed in this figure are defined as follows:

Type I = a sequence of attack, to reorganization, to renewal of

the attack.

Type II - a change from attack to defense.

Type III = a change from defense to withdrawal.

Clark's Type I and Type Ii breaks perhaps should be combined and treated

as a single category, as we have done in (a) of Fig. 9. There seems to

be no way to foresee whether an attempted reorganization would permit a

renewal of the assault. Even if a renewed assault is planned by the

commander, the break may en- up beirg of Type II because, for example,

an enemy counterattack spoil& the anticipated renewal of the offensive.
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Table F-i

EMPIRICAL DISTRIBUTION OF CASUALTY-FRACTION VALUES

(Extracted from Willard(12) for Category I battlesa)

Fraction of Battles with
Casualty Upper Casualty Fractiong

Fraction, f Lees Than f
0.05 0.13
0.075 0.25
0,10 0.41
0.125 0.50

0.20 0.73
0.25 0.82
0.33 0.90
0.50 0.98
ACategory I battles are those char-

acterized by G. Bodart's Irt-egs-Lexi.on
as treffen, gefeoht, and sohZaat.

bupper casualty fraction - max (fx' f y

Table F-2

EMPIRICAL DISTRIBUTION OF CASUALTY-FRACTION VALUESa
(Composite from Refs. 8 and 10)

Range of Attacker Wins (Wx) Defender Wins (W,) Either Side Wins
Casualty- Cum. Cum. Cum
Fraction No. No. Cum. No. No. Cum. No. No. Cum.
Values Battles Battles % Battles Battles % Battles Battles %

0.00-0.05 28 28 15 33 33 21 61 61 18
0.05-0.10 49 77 41 40 73 46 89 150 43
0.10-0.15 31 108 57 29 102 65 60 210 61
0.15-0.20 30 138 73 15 117 74 45 255 74
0.20-0.25 17 155 82 22 139 88 39 294 85
0.25-0.30 8 163 87 7 146 92 15 309 89
0.30-0.35 5 168 89 4 150 95 9 318 92
0.35-0.40 1 169 90 4 154 97 5 323 93
0.40-0.45 5 174 93 1 155 98 6 329 95
0.45-0.50 1 175 93 3 158 100 4 333 96
0.50-0.55 0 175 93 0 158 100 0 333 96
0.55-0.60 0 175 93 .. 0 333 96
0.60-0.65 3 178 95 .. 3 336 97
0.65-0.70 2 180 96 .. .. .. 2 338 98
0.70-0.75 0 180 96 .. .. .. 0 338 98
0.75-0.80 1 181 96 .. .. .. 1 339 98
0.80-0.85 0 181 96 .. .. .. 0 339 98
0.85-0.90 1 182 97 .. .. .. 1 340 98
0.90-0.95 1 183 97 .. .. .. 1 341 99
0.95-1.00 5 188 100 1.. .. 5 346 100

aNumber of battles w number of battles in which one side or another
experienced a casualty fraction in the appropriate range. Total number
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Table F-3

EMPIRICAL DISTRIBUTION OF CASUALTY-FRACTION VALUES

(Composite of Type I and Type II breaks,a EM cumulative
casualties for day of break plus the two preceding days( 4 ))

Casualty Fraction Cumulative Percentb

0.030 3
0.045 6
0.048 10
0.053 13
0.064 16

0.064 19
0.086 23
0.091 26
0.097 29
0.097 32

0.116 35
0.128 39
0.130 42
0.132 45
0.137 48

0.141 52
0.147 55
0.156 58
0.159 61
0.162 65

0.164 68
0.181 71
0.194 74
0.211 78
0.229 81

0.262 84
0.311 87
0.313 90
0.314 94
0.326 97

aType I break is defined as a change

from attack to reorganization and then
return to attack. Type II break is de-
fined as a change from attack to defense.

bThere were 30 battles in the data

sample. The cumulative percentage value
associated with the ith battle was taken
as 100 •i/31.
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